
39:?CRT DOCUMENTATION PAGE ,

N EP R T * .r

_ _ __ THESIS tSXXW0MX

Hardware Modeling and Top-Down Design Using
VHDL

Dennis P. Morton, 2d it.

Lg: - -' -' NZ VON NA,'.., AND ADDRESSiE) 1E 777 ". .,.

AFIT Student Attending: Massachusetts Institute of AFIT/CI/CIA- 91-055

_Technology

- .- '. ,.N~. 2VCNI'ORNG AGENCY NAMES) A1N0 ADDRESStES. 0 SPO%3 -
Z -- AGENCY :'

AFIT/CI
Wright-Patterson AFB OH 45433-6583

J.ljT ON A jAIA8LLTY S.ATMENT '2b DI;.eu- 6.

Approved for Public Release lAW 190-1
Distributed Unlimited
ERNEST A. HAYGOOD, 1st Lt, USAF
Executive Officer

• -- -4

F , '

AUG 0 8 1991

;I SUBECT TERMS 15. NUMBER C PAGES
237

16. PRICE CODE

17 SECUR T .ASSIFICATION 18 SEC, "ITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20 LIMITATION OF ': -OFqEOT OF Tr-'S PAGE OF ABSTRACT

Hardware Modeling
and

Top-Down Design Using VHDL

by

Dennis P. Morton

2Lt. USAF

237 pages

Submitted to the Department of Electrical Engineering and Computer Science at the
Massachusetts Institute of Technology

on May 10, 1991 in partial fulfillment of the requirements for the degree of

Master of Science

Abstrct

As digital designs grow more and more complex, some method of controlling this complexity
must be used in order to reduce the number of errors and the time spent on a design. VHDL (Very
High Speed Integrated Circuit Hardware Description Language) promises to ease the design and
verification of complex digital circuits by encouraging the use of top-down design.

This thesis demonstrates how VHDL, combined with a top-down design methodology,
enables the designer to specify and verify a digital design faster and with fewer errors. The
scoreboard, a section of hardware in the Charles Stark Draper Laboratory's Fault Tolerant
Parallel Processor, is used as an example to demonstrate the utility of VHDL. The scoreboard is
responsible for message processing within the FTPP and thus has a critical effect on performance.
It also represents the most significant risk of any component in the FTPP. The use of VHDL has
the potential for ensuring an optimal scoreboard design with minimal errors and an improved
design time.

91 8 07 144 91-07266

Hardware Modeling
and

Top-Down Design Using VHDL - -

by

Dennis P. Morton

Submitted to the I

Department of Electrical Engineering and Computer Sciencq -2"
in Partial Fulfillment of the Requirements for the Degree of.

Master of Science in
Electrical Engineering and Computer Science

at the

Massachusetts Institute of Technology

June 1991

© Dennis P. Morton, 1991

The author hereby grants to M.I.T. permission to reproduce
and to distribute copies of this thesis in whole or in part.

Signature of Author f
Department f Electrical Engineering and Computer Science

May 10, 1991

Certified by
Jonathan ',Allen
Thesis S pervisor

Certified by
Bryan P. Butler

Charles Stark Draper Laboratory

Accepted by
Arthur C. Smith

Chairman, Departmental Committee on Graduate Students

Hardware Modeling
and

Top-Down Design Using VHDL

by

Dennis P. Morton

Submitted to the
Department of Electrical Engineering and Computer Science
in Partial Fulfillment of the Requirements for the Degree of

Master of Science in

Electrical Engineering and Computer Science

at the

Massachusetts Institute of Technology

June 1991

© Dennis P. Morton, 1991

The author hereby grants to M.I.T. permission to reproduce
and to distribute copies of this thesis in whole or in part.

Signature of Author ' -, e"

Department f Electrical Engineering and Computer Science
May 10, 1991

Certified by

Thesis Sdpervisor

Certified by rm 1
Bryan P. Butler

Charles Stark Draper Laboratory

Accepted by
Arthur C. Smith

Chairman, Departmental Committee on Graduate Students

Table of Contents

1. Introduction .. 9
1.1. Problem Statement ... 9
1.2. Objective ... 10
1.3. A udience ... 10
1.4. Approach ... 10

2. Background Information .. 13
2.1. Fundamentals of Byzantine Resilience 14
2.2. Exchanges .. 15
2.3. The FTPP .. 16
2.4. C3 Scoreboard Concepts .. 17

2.4.1. SERP .. 17
2.4.2. Configuration Table .. 18
2.4.3. Timeouts .. 18

2.5. Design Goals .. 19
3. Hardware Description Languages .. 21

3.1. History ... 21
3.1.1. Desirable Features ... 21
3.1.2. VHDL Impetus and Development 22

3.2. VHDL Overview ... 23
3.2.1. The Design Entity ... 23
3.2.2. The Testbench ... 25
3.2.3. Packages ... 25
3.2.4. Data Objects ... 26

3.3. Description Styles Revisited ... 27
3.3.1. Processes ... 27
3.3.2. Signal Assignments .. 2B
3.3.3. Blocks ... 29
3.3.4. Duality ... 29

4. Motivation for Modeling .. 31
4.1. Top-Down Design ... 31
4.2. Synthesis ... 35
4.3. Design and Description in One ... 35
4.4. Concurrent Design ... 36
4.5. Complexity ... 36
4.6. Verification .. 36
4.7. When not to Use VHDL .. 37
4.8. Caveats ... 37

5. Behavioral Modeling Considerations ... 39
5.1. State Machine Modeling ... 39
5.2. Synchronous designs ... 47
5.3. Timing ... 48
5.4. Compilation Dependencies .. 48
5.5. Resolution functions ... 49
5.6. Subprograms .. 50

6. Scoreboard Functional Description ... 51
6.1. SERP Format .. 51
6.2. CT Format .. 51
6.3. Goal : Optimize The Common Case 53
6.4. SERP Processing ... 54

6.4.1. Voting .. 56
6.4.2. Finding Messages .. 60

6.5. Faulty Conditions .. 64
6.6. Other Operations ... 65

7. Scoreboard Behavioral Model .. 67
7.1. Overall Design ... 67
7.2. Explanation of Important Sections of Code 68

7.2.1. Packages ... 68
7.2.2. Entities ... 74

7.3. Functional Description .. 82
7.3.1. Reset .. 82
7.3.2. ClearTimeouts ... 62
7.3.3. UpdateCT ... 83
7.3.4. Process-newSERP ... 83

7.4. Performance ... 84
7.5. Verification and Testing .. 84

7.5.1. C Program .. 84
7.5.2. Testbench .. 85

7.6. Limitations .. 85
8. Discussions on Implementation .. 87

8.1. General Purpose Microprocessor 87
8.2. F PG A .. 89
8.3. Com bination .. 90
8.4. A S IC .. 91

9. Conclusions and Recommendations ... 95
10. A ppendices 95

10.1. Glossary of Terms ... 95
10.2. Scoreboard Algorithm .. 96
10.3. Sample Scoreboard Code ... 105
10.4. Recommended Style Guide .. 109
10.5. Pitfalls to Avoid .. 110
10.6. VHDL Behavioral Description ... 111

10.6.1. Scoreboard Package ... 111
10.6.2. Address Package .. 115
10.6.3. Voter Package ... 117
10.6.4. Testbench Package .. 126
10.6.5. Main Control Package .. 13
10.6.6. Voted SERP Package .. 133
10.6.7. PID to VID Package ... 134
10.6.8. Dual Port RAM Package 135
10.6.9. Scoreboard .. 136
10.6.10. Dual Port Ram ... 142
10.6.11. Voted SERP Memory .. 144
10.6.12. PID to VID Table ... 146
10.6.13. VIDs in System Table ... 148
10.6.14. Voting and Timeout Hardware 14
10.6.15. Sender .. 157
10.6.16. Main Controller ... 161
10.6.17. Address Buffer ... 167
10.6.18. Scoreboard Subsystem 168
10.6.19. Testbench ... 171

10.7. Structural VHDL for theVoting and Timeout Hardware 174
10.7.1. Voting and Timeout Hardware 174
10.7.2. Timeout Subsystem ... 12

10.7.3. Timeout Checker ... 186
10.7.4. Timeout Memory .. 188
10.7.5. Timer ... 189
10.7.6. Voting Subsystem .. 191
10.7.7. One Bit Voter ... 194
10.7.8. One Bit Unanimity Generator 196
10.7.9. One Bit Syndrome Accumulator L
10.7.10. Eight Bit Voter .. 199
10.7.11. Eight Bit Unanimity Generator 231
10.7.12. Eight Bit Syndrome Accumulator 203

10.8. C Test Vector Generator .. 205
10.8.1. File config.h .. 205
10.8.2. File ubdefs.h .. 207
10.8.3. File ct.c ... 209
10.8.4. File nf-serp.c .. 213
10.8.5. File serp.c .. 215
10.8.6. File vote.c ... 221
10.8.7. File send.c .. 226
10.8.8. File check.c .. 228
10.8.9. File io.c ... 231
10.8.10. File m ain.c ... 233
10.8.11. m akefile .. 236

11. R eferences ... 237

Ust ofFgure

Figure 2-1, Malicious Failure with Three Computers 14
Figure 2-2, Minimal 1-Byzantine Resilient System 15
Figure 2-3, The FTPP ... 16
Figure 3-1, Sample Entity Declaration 24
Figure 3-2, Sample Architecture ... 25
Figure 3-3, Block Example .. M
Figure 4-1, Top-Down Design Methodology
Figure 4-2, Conventional Design .. 33
Figure 4-3, Top-Down Design with VHDL 34
Figure 5-1, Example State Diagram ... 40
Figure 5-2, State Machine Package 41
Figure 5-3, State Machine Entity Declaration 41
Figure 5-4, CASE Statement Example .. 42
Figure 5-5, CASE Variation .. 44
Figure 5-6, Nested B! ck Example .. 46
Figure 5-7, Conditional Signal Assignment Example 47
Figure 5-8, Compilation Dependencies [VHDL90] 49
Figure 6-1, SERP Entry ... 51
Figure 6-2, Configuration Table Entry 52
Figure 6-3, Format of the Presence Bits 52
Figure 6-4, Example Configuration Table Entry 53
Figure 6-5, Sequential Scoreboard Algorithm 56
Figure 6-6, Conceptual View of the Voter 58
Figure 6-7, Syndrome Format .. W
Figure 6-8, Example OBNE syndrome 59
Figure 6-9, Exchange Class Byte Fields 60
Figure 7-1, High-level Partitions of the Scoreboard 68
Figure 8-1, Implementation Tree .. 87
Figure 8-2, RISC scoreboard ... 8
Figure 8-3, C Voting Code ... 89

1. Introduction

1.1. Proble Statemnt

In order to meet future requirements of extremely-reliable computers with high

throughput, the Charles Stark Draper Laboratory (CSDL) initiated the Fault-tolerant Parallel

Processor (FTPP) project. The FTPP achieved these requirements by combining Byzantine

resilience1 with parallelism via multiple, concurrently executing processors. Cluster 1 (Cl),

the laboratory prototype, was completed in 1988. While an excellent proof of concept, the

design possessed design and implementation flaws which were difficult and tedious to find

and rectify. The next FTPP, Cluster 3 (C3)2 , was conceived as a third-generation FTPP

suitable for use in field applications.

The scoreboard is a section of hardware responsible for message processing in the

FTPP. In C1, it was implemented with many PALs and RAMs and was very difficult to

debug. Furthermore, flaws were found in the fundamental algorithm. These reasons, as

well as a significant increase in the scoreboard functionality, necessitated a complete

redesign of the scoreboard for C3.

This new design presented many challenges. First, the algorithm required

extensive reworking to achieve the enhanced functionality. Second, the scoreboard's

complexity mandated the use of good design techniques. Finally, the design had extensive

testing problems which had to be solved. An effective methodology was needed to address

these challenges and come up with the best possible design. VHDL (Very High Speed

Integrated Circuit Hardware Description Language) encourages the use of such a

methodology and has other advantages that made it an effective tool in designing the

scoreboard: 1) it allows design tradeoffs to be investigated quickly and easily; 2) it

simplifies testing and validation of the scoreboard by allowing one test bench to be used

throughout the design process; and 3) it provides implementation-independence for much of

the design cycle.

Byzantine resilience is a degree of fault tolerance allowing toleration of arbitrary faults. See section
2.1 for a more detailed explanation.

2 C2 was a minimum Byzantine resilient system designed to demonstrate high-speed fiber optics for
inter-FCR communication.

9

4.

1.2. Otetiw

The objective of this thesis is to design and document a fully functional behavioral

scoreboard model in VHDL, both to demonstrate the advantages of VHDL and to accelerate

the design process of the scoreboard. This thesis attempts to show that top-down design using

VHDL yields better designs with fewer iterations. It also presents some guidelines and

techniques to enhance the modeling process itself.

Since the entire design process, from concept to working hardware, cannot be

completed in the amount of time allotted a thesis, the VHDL model is also used to document

the work completed to date. The VHDL model, along with this thesis, will serve to completely

document the work which has been done on the scoreboard.

1.3. Audience

The intended audience for this thesis, besides my advisors, is any engineer

interested in modeling using VHDL, especially at the behavioral level. I have attempted to

structure my writing such that little knowledge of VHDL or fault-tolerance is required.

However, chapter 7 will have more meaning if the reader has at least a working knowledge

of VHDL.

This thesis is also aimed at anyone who is skeptical of the utility of VHDL, especially

those who are wary of any language which is a Department of Defense standard. Hopefully,

the following exercise will persuade these people of the merits of using VHDL to design

digital hardware.

1.4. Approach

This thesis is a VHDL design example. As such, it is structured to specify the

scoreboard's design, explain the motivations for using VHDL, enumerate the advantages of

VHDL, and interpret/analyze the VHDL model of the scoreboard with some suggestions for

hardware implementations.

Chapter 2 familiarizes the reader with the concepts of fault-tolerance and Byzantine

Resilience as applied to the FTPP in general and the scoreboard in particular. Chapter 3

introduces VHDL and motivates the subsequent chapter on the advantages of VHDL

modeling. Chapter 5 covers modeling issues such as state-machines, timing, and

synchronous designs. Chapter 6 provides a functional description of the scoreboard. Chapter

10

7 covers the behavioral model of the scoreboard. The final two chapters discuss various

implementation methods and topics for further research.

11

2. Background Information

Since the dawn of the computer age, computer architects have been interested in

constructing fault-tolerant computers to decrease down-time and increase reliability. One

application for fault-tolerance is in transaction-processing systems, which should be fault-

tolerant to make errors unlikely and to allow them to remain "up" while being repaired. One

example is the Tandem line of NonStop® computers. Stratus also makes a line of fault-

tolerant computers, notable for their ability to phone the factory when a part fails. These

computers all have at least one thing in common - they take the approach of estimating and

covering expected failure modes by replicating critical components and voting outputs. For

example, alternate boards of a self-checking pair are powered by separate supplies so that if

one power supply fails, only half of each pair is affected.

The Achille's heel of most fault-tolerant computers, including those mentioned

above, is malicious faults. If a component fails in such a way that it produces conflicting

outputs, these computers will probably not be able to reach an agreement. Figure 2-1 shows

such a situation using three independent computers connected with bi-directional

communication links. Computer A has failed ma]iciously and is transmitting conflicting

information to the other two computers. Computers B and C must act off what Computer A has

said3 . However, due to Computer A's malicious failure, no consensus is possible, since no

clear majority exists [Lamp 82].

3 Computer A might have a sensor attached to it whose data Computers B and C need also.

13

Computer A

yes no

Computer B he said "no" Computer C
[yesnol (no,yesl

he said "yes" --- 4

Figure 2-1, Malicious Failure with Three Computers

The ability to tolerate malicious failures is desirable for applications which require

extremely high reliability. Some examples are flight system control, where a failure could

cause the plane to crash, and jet engine control, where a failure could cause loss of the

engine. The Byzantine Resilience [Lamp82] algorithm discussed below guarantees

consensus even in the presence of malicious failures.

2.1. Fundamentals of Byzantine Resilience

A computer which is able to tolerate any arbitrary, single random fault is said to be 1-

Byzantine resilient. Arbitrary means that there are no constraints on what fault modes are

covered; any one fault, no matter how unlikely, may occur with 100% coverage. Byzantine

resilient algorithms exist to cover any number (f) of arbitrary faults.

A fault-tolerant computer is designed with a number of interconnected fault-

containment regions (FCR), each region being incapable of propagating an internal fault to

other FCRs [Butler89]. This is achieved by physical and electrical isolation of the FCRs.

Byzantine Resilience places four formal requirements on a fault-tolerant computer to

achieve 100% coverage of a single arbitrary fault. These requirements are:

1. There must be at least 3f+1 FCRs [Lamp82].

2. Each FCR must be connected to at least 2f+1 other FCRs through unique

communication links [Dolev82].

14

3. The protocol must consist of at least f+1 rounds of communication among FCRs.

This is known as the source congruency requirement [Harper87].

4. The FCRs must be synchronized to within a known and bounded skew [Harper87].

A minimal 1-Byzantine Resilient configuration is shown in Figure 2-2. It contains four

FCRs, each connected to the three other FCRs through bi-directional communication links.

Figure 2-2, Minimal 1-Byzantine Resilent System

2.2. Exchanges

There are two fundamental methods of exchanging messages in a 1-Byzantine

Resilient system to arrive at consistent data. These two exchange methods are known as

class 1 and class 2 exchanges [Harper87]. Each type of exchange will be explained using

Figure 2-2 as a reference.

A class 1 exchange is performed when all FCRs have a message which must be

consistent across the system. This exchange has one phase wherein each FCR sends its

message to the other three FCRs. Eacn FCR then votes the original message plus the three

copies of the message it received to arrive at a consistent message. A class 1 exchange

guarantees validity of the exchanged data.

A class 2, or source congruency, exchange is performed when one FCR has a message

which must be distributed to all other FCRs. All non-faulty FCRs must agree on this

message. This exchange has two phases. In the first phase, the source FCR sends its message

to the three other FCRs. In the second phase, each FCR sends a copy of the message it received

to the three other FCRs. Each FCR then votes the copies (the original is not included in the

15

voting) of the message to arrive at a consistent result. A class 2 exchange guarantees

validity if the source is non-faulty and agreement if the source is faulty.

2.3. The FIPP

The Fault Tolerant Parallel Processor was designed to fill the need for an ultra-high

reliability, high-performance computer. The first prototype FTPP, known as C1, is a 1-

Byzantine Resilient system consisting of four FCRs interconnected by high-speed

communication links [Harper87]. Each FCR contains one Network Element (NE) and four

Processing Elements (PE). The physical configuration is shown in Figure 2-3. The PEs are

single-board computers, while the NEs are custom hardware which perform the Byzantine

resilience exchanges.

FMM

NE

Figure 2-3, The FTPP

C1 provides the capability to logically group PEs together into fault masking groups

(FMG) of two, three, or four processors to enhance the reliability of critical tasks. The

members of a FMG run the same code and periodically exchange messages to ensure that

they are operating on the same inputs and producing the same outputs. Each FMG is treated

16

as a single entity, or virtual group, for purposes of sending and receiving messages. When a

FMG is sent a message, all PEs in the group receive a copy.

All messages in C1 are exchanged between virtual groups. A virtual group can be

either a FMG or a single PE. Thus every PE in the system has two "addresses," its physical

ID, which indicates its (NE,PE) location, and its virtual ID, which other virtual groups use to

send it messages. The NE maintains a data structure called the configuration table (CT)

which translates virtual IDs to physical IDs. Passing messages in this manner allows

healthy PEs to transparently assume the tasks of faulty PEs.

When a virtual group wishes to send a message, it writes an exchange request into a

FIFO (First In-First Out memory) in the NE. Periodically, each NE assembles this

information into a Local Exchange Request Pattern (LERP) [Harper87]. Four source

congruency exchanges are performed on the LERPs to ensure that all the NEs have

consistent copies of the four LERPs. The aggregate of the four LERPs is called the System

Exchange Request Pattern (SERP) [Harper87]. The SERP is delivered to the scoreboard, a

section of hardware internal to the NE. The scoreboard processes the exchange requests in

the SERP to decide which messages to exchange.

2.4. C3 Scoreboard Concepts

The C1 scoreboard possessed design and implementation flaws which were difficult

to find and rectify. Similar flaws are intolerable in the fieldable C3, so it was decided to

completely redesign the scoreboard from scratch. The rest of this chapter introduces the

functions of the C3 --oreboard, which in many ways closely resembles that of C1. It describes

the SERP and configuration table and provides an overview of timeouts. Chapter 6 contains

the complete functional description of the scoreboard.

2.4.1. SEP

Periodically, each NE polls its own PEs to determine four pieces of information:

1. Does the PE have a message to send (is its Output Buffer Not Empty, OBNE)?

2. To whom will it be sent (destination virtual ID) ?

3. What type of message is it (i.e. class 1, class 2, other)?

4. Can the PE receive a message (is its Input Buffer Not Full, IBNF) ?

17

Once this information has been gathered for each PE, the combined information

inside each NE is assembled into the Local Exchange Request Pattern (LERP). The NEs then

execute a source congruency exchange to arrive at a consistent aggregate of the four LERPs,

the System Exchange Request Pattern (SERP). The SERP is then passed on to the scoreboard

for processing.

SERP entries are indexed by processor ID (PID) and network element ID (NEID). In

other words, the first PE in the system (NE 0, PE 0) has the first entry in the SERP and so on

traversing the NEs and PEs. The scoreboard, however, must read all the SERP entries

corresponding to a VID in order to vote them. Therefore, - me method of mapping PIDs to

VIDs must exist. The data structure which implements this mapping is called the

configuration table (CT).

2.4.2. Configuration Table

All PEs are combined into virtual groups composed of one, three, or four members

known as simplexes, triplexes and quadruplexes (quads). The members of a virtual group

are addressed in aggregate through the VID number. Unlike C1, C3 does not support virtual

groups with two members since such a virtual group provides no fault masking capability.

Each member must reside on a different NE to satisfy the isolation between FCRs necessary

for Byzantine resilience.

Because PEs deal with virtual addresses and NEs deal with physical addresses, there

must be a way of mapping PEs to VIDs. The data structure which performs this function is the

configuration cable (CT). Each entry in the CT corresponds to one VID 4 and contains the

redundancy level of the VID, a bit field denoting the NE locations of the members of that VID,

the PIDs of all the VID's members, and a value to use when performing timeouts on the VID.

2.4.3. Timeouts

Timeouts are required because PEs are functionally synchronized. They arise from

the need to be able to detect the absence of a message (Lamp82]. They allow the scoreboard to

ignore faulty PEs who disagree with the other members of the virtual group for a given period

of time. For example, if one member of a VID had its power turned off, its OBNE and IBNF

4 Prom this point on, the term VID denotes a virtual group.

18

bits would never get asserted. Without timeouts, that virtual group could not send or receive

messages because agreement between members would never be achieved.

A timeout is begun on a virtual group whenever a majority, but not a unanimity, of its

members have their OBNE or IBNF bits set. If the timeout expires before unanimity is

observed, the OBNE or IBNF bit for the virtual group will be set. The OBNE and IBNF

timeouts are handled independently. The exact protocol and rules for starting and checking

timeouts will be discussed in section 6.4.1.4.

2.5. Design Goals

The C3 scoreboard presented many design challenges. First, the algorithm used

required detailed specification to ensure that all tenets of Byzantine resilience were

followed. Second, because of the complexity of this algorithm, the hardware to implement it

had to be carefully designed and optimized. This process by its very nature would involve

many design iterations. Finally, the testing strategy of the design required complex test-

generation algorithms itself.

Because of these challenges, the top-down methodology was thought to be the wisesL

method to use for designing the scoreboard. It was also felt that VHDL would allow the design

to be tested and optimized with the least amount of effort.

19

3. Hardware Description Languages

This chapter provides an overview of the major features of hardware description

languages in general and VHDL in particular. An in-depth discussion is beyond the scope of

this thesis. However, the following discussion presents the features which are important for

understanding the scoreboard VHDL model. I recommend reading this chapter even if the

reader has worked with VHDL before since it presents my view of the language (which is

very likely different from other views).

The chapter begins with a brief history of hardware description languages (HDL)

and the impetus behind their development. It then covers desirable features of an HDL. The

rest of the chapter is devoted to the development and features of VHDL.

3.1. Histwy

Hardware description languages were originally developed in the early 1970's to

simplify the design of computer hardware. With the advent of large scale integration,

schematics alone became less able to convey sufficient information about a design.

Furthermore, there was an increasing need to describe and document designs at a higher

level of abstraction. The new logic simulators of the time also required a means to describe a

design [Lip 77].

HDL research caught fire with the promise of simplifying the design of increasingly

complex computer circuits. It wasn't long before many HDLs existed, each exhibiting

different strengths but none of which could be used for all levels of the design process [Lip 77].

In 1973, the ACM and the IEEE formed a combined, ad-hoc committee with the goal of

attempting to standardize HDLs [Lip 77]. The committee was interested in creating standard

features which all HDLs should incorporate. However, they did not wish to stifle HDL

research so they proposed only a base* ine feature set [Lip 77].

3.1.1. Desirable Features

An HDL must possess certain features in order to be effective and useful. First, and

most importantly, it must support concurrency since pieces of hardware by nature operate in

parallel. Most general purpose programming languages do not support parallelism, thus

21

f

making them poor choices for hardware modeling5 [Lip 77]. A good HDL should also support

differing levels of abstraction, even within the same model, but not force the modeler into

using any particular style. Some common levels of abstraction, from most abstract to least,

are algorithmic, dataflow, and structural. Finally, an HDL should provide a built-in model

of time to make it useful for timing checks.

3.1.2. VHDL Impetus and Development

In 1980 the U.S. Government launched the Very High Speed Integrated Circuits

(VHSIC) program with the goal of significantly increasing the performance and density of

integrated circuits. Very soon afterwards, however, the Government realized that to help

different contractors work together efficiently and ensure the reusability and

maintainability of designs, a standard method to communicate design data was needed.

Furthermore, the densities of VHSIC chips and the complexity of the resulting systems

exposed the need for a method to smooth the design process and manage the huge amounts of

design data [Wax89]. The VHDL program was born from these needs.

The VHDL program was officially begun in 1981 with an initial meeting of people
from government, academia, and industry [Wax89]. The original language contracts were

awarded to Intermetrics, IBM, and TI, with Intermetrics being the prime contractor. The
IEEE, also recognizing the need for a standard hardware description language, began a

standardization effort in 1986, the same year in which Intermetrics released the first VHDL

toolset. IEEE Standard 1076, passed in December, 1987, standardized the VHDL language

[Wax89].

At the time of standardization in December, 1987, only one crude VHDL toolset

existed. By 1991, at least halfa dozen commercial VHDL toolsets and a number of free

university VHDL toolsets were available. Nearly every major CAE vendor has announced

or is shipping a VHDL product, which indicates how well VHDL has become accepted both

inside and outside government circles. VHDL promises to become nearly as pervasive as

schematic entry systems, with an even greater impact on design productivity and

automation.

Though many papers exist on such a subject.

22

3.2. VHDL Overview

VHDL is a concurrently executed language with a intrinsic sense of time. This

means that parts of a given model will appear to execute concurrently. All VHDL statements

are scheduled to execute at a given point in time and are executed sequentially6 within a

single delta - an infinitesimally small, but non-zero, unit of time. The simulation time is

then advanced to the next set of scheduled statements which are executed in the next delta.

Each such execute-update cycle is known as a simulation cycle [RL 89]. The time aspect of

VHDL is complex and full of pitfalls. The author suggests reading Lipsett, Schaefer, and

Ussery's excellent book "VHDL : Hardware Description and Design" for a more detailed

description of timing in VHDL (especially Chapter 5).

The general model on which VHDL is based is composed of three distinct,

interrelated models : behavior, time, and structure [RL 89]. The model of behavior allows the

designer to specify the function of an object without regards to its internal structure. The

structural model allows the designer to describe an object's function using simpler,

interconnected objects. The model of time, perhaps the most important aspect of VHDL,

allows the designer to embed timing information in the model. The following sections

explain how VHDL implements these models.

3.2.1. The Design Entity

Th ,--incipal hardware abstraction in VHDL is the design entity [RL 86]. A design

entity is of two fundamental parts : the interface and the design body. An

important feature of the language is that more than one design body can exist for a given

interface. Different bodies can focus on different levels of hardware abstraction, for

example. A VHDL model can be composed of any number of design entities connected

together.

The design entity's interface is described by an entity declaration. This declaration

contains an arbitrary number of ports and generics (though neither is syntactically

necessary) which are used to pass information into and out of the design entity. The

interface represents the only portion of the design visible outside the entity. The design body

6 Sequentially because VHDL platforms (at least as of this writing) all run on uniprocessor systems.
Simulation speed would be greatly enhanced if VHDL ran on a parallel processor, though.

23

is composed of an architecture declaration and an optional configuration specification. The

function of the entity is implemented inside of the architecture. The following sections

describe the design entity in more detail.

3.2.1.1. InterfaceDeclaration

The design entity interface is contained in an entity declaration. A sample

declaration is shown in Figure 3-1. This declaration describes the interface to a 2-to-1

multiplexor.

ntity multiplexor is
ort (a,b : in bit;

select line : in bit;
) output-: out bit

d multiplexor;

Figure 3-1. Sample Entity Declaration

The ports of an entity are its communication channels with the outside world [RL 861.

A port declaration consists of a mode and a type. The mode specifies the direction of

information flow through the port. A mode of in 7 specifies input only, a mode of out specifies

output only, and a mode of inout specifies bidirectional flow. The other two modes, buffer and

linkage, are special. Their meanings can be found in the IEEE VHDL Language Reference

Manual (LRM) [IEEE88].

A port type specifies the data values which the port can assume [RL 86]. For example, a

standard data type is bit, which can assume the values '0' or '1'. Another common type is

integer. VHDL also supports composite types such as arrays and records. It is important to

note that VHDL is a strongly typed language.

An entity declaration may also contain generics. Generics are constants used to

increase the generality of an entity. A common use for generics is to pass timing

information into an entity. This way, components of the same family can be substituted into

a design without writing separate design units for each one. For example, if a design

requires three NAND gates each with different timing, only one design unit need be written

if generics are used to pass in the timing information.

7 For the remainder of this theis, al VHDL keywords will be placed in bold letters.

24

3.2.1.2. DesignBody

The function of the design entity is specified in an architecture. A sample

architecture for the multiplexor is shown in Figure 3-2. VHDL supports three basic styles of

functional description: behavioral, dataflow, and structural. Pehavioral descriptions are the

most abstract. They specify the output response to the inputs in algorithmic terms. Usually,

little structure is implied. A dataflow description describes a function in terms of

concurrently executing register transfer level (RTL) statements (Figure 3-2 is a dataflow

description). It is less abstract than a behavioral description. The least abstract description

style is structural. This style consists of interconnected components. Each component is

instantiated in the architecture and wired together using signals. An architectural body is

not limited to any one description style. Any mixture of the aforementioned styles may be

utilized within the same architecture body.

architecture dataflow of multiplexor is
begin

output <= a when select line - '0' else

end dataflow;

Figure 3-2, Sample Architecture

The optional configuration specification binds a design body to an instantiated

component. It provides the capability to bind an architectural body's components to similar,

but not identical, design entities. For example, if three components are required which are

functionally identical but differ in their timing, a configuration can be used to specify the

timing data for each component.

3.2.2. The Testbenc

A VHDL testbench is the highest level entity in a given simulation. It instantiates a

design and drives the inputs in some prescribed manner. It also can perform sophisticated

error checking because it has the power of a general purpose programming language at its

disposal (see section 4.6). Using a testbench to test a design eliminates simulator dependence

since no proprietary simulator command language is required.

3.2.3. Packages

Packages provide the VHDL modeler with a convenient method to group constants,

types, signals, and subprograms so as to make them visible to multiple design units. A

25

package is composed of two parts, the package declaration and an optional package body. The

package declaration contains the constant, type, and subprogram declarations, while the

package body assigns values to the constants and fleshes out the subprograms. VHDL does

not require every package to have a body. However, changes to the package body do not

require design units referencing the package to be recompiled, whereas changes to the

package declaration require recompilation of all design units referencing the package (see

section 5.4).

3.2.4. DataObjects

To fulfill its function as a modeling language, VN"DL contains three standard data

objects: signals, variables, and constants. The fundamental data object in VHDL is the

signal. Each signal is represented conceptually as a set of time-value pairs. The signal

assumes the value in the pair at the simulation time specified. Each time a signal is

assigned a value, a new time-value pair is added to the list8 . Signals can be scheduled to

take on a value after a given amount of time, such as in the statement

signal example 1: signal clock : bit;
clock <= not clock after 10 ns;

They can also be assigned conditionally, such as in the following example

signal example 1: signal output : bit;
output <= '1' when clock - '0' else '0';

Signals are also used to wire together components in a structural description.

As with most programming languages, VHDL provides the capability to declare and

use variables. However, their use is much more restricted than that of signals because of the

concurrent nature of VHDL . Variables can only be used within subprograms or processes to

prevent them from being visible to multiple, concurrently executing processes.

variable example variable index : integer;
index :- index + 1;

VHDL provides the ability to define and use constants. The constant must be

assigned a value when it is declared, except for deferred constants in a package declaration.

8 This is not always true. The addition of a new time-value pair depends on what timing model,

transport or inertial, was used and on the present time-value list. The meanings of each model can
be found in Chapter S Lip89].

26

constant example constant clockperiod : time :- 100 ns;

3.3. Dsciiption Styles Revisited

This section discusses some of the constructs within VHDL which facilitate the

different modeling styles (i.e. behavioral, dataflow, and structural).

3.3.1. Processes

The process is VHDL's fundamental behavioral modeling construct as well as the

fundamental unit of concurrency. All VHDL expressions have a corresponding process. A

process is composed of three parts : the process declaration, an optional sensitivity list, and

the process body. Note that if the sensitivity list is omitted, then at least one wait statement

must be included 9 . Without either, the process will never suspend execution and thereby tie

up the simulation. A single process may not have both a sensitivity list and a wait statement.

The statements within a process execute sequentially within one unit of delta time, while all

the processes in a given simulation execute concurrently.

A process is executed when one of three conditions is met. First, all processes are

executed once up to the first wait statement (or entirely if a sensitivity list is included) when

the simulation begins. Secondly, a process is executed when a signal in its sensitivity list

changes. Finally, process execution resumes when the condition attached to a wait statement

is met.

The following example shows a 2 to 1 synchronous multiplexor modeled using two

different styles of processes, one with a sensitivity list and one with a wait statement.

package mux_package is
subtype muxtype is bit;
subtype controltype is boolean;

constant clock-active : control_type;
constant selecta : control-type;

end mux_package;

package body muxpackage is
constant clock-active : control-type : true;
constant selecta : control-type :- t ue;

end muxpackage;

us* work. mux_package. all;
entity two to one mux is

9 This is not syntactically required. The analyzer will only give a warning that the proem has neither
a sensitivity list nor a wait statement,

27

generic (output-delay : TIME :- 10 ns);
port (a,b : in muxtype:

select line : in controltype;
clock : in control type;
output out mux type

end two to one mux;

Architecture 1 Architecture 2
avhitocture two to one mux behavior of atuhitectur. two to one mux behavior oftwo to onei uz 1.. two to one mux is
begin begin _

behavior : pvnessa (a,b,select_line, clock) behavior : pzooa
begin begin

if clock - clock active end clock'event then unit mtil clock - clock active and
if select line - select a then clock'event;

output <- a after out-putdelay; if select line - select a then
elso output R. a after out-put_delay;

output <a b after outputdelay; also
end if; output <- b after output delay;

end if; end if;
and precee; end Prooess;

end two toone mux behavior; end twoto one mux_behavior;

The package declaration contains two subtypes which abstract away the mux's input,

output and select line types. This allows smooth conversion from high level modeling, where

booleans and integers reign, to low level modeling where bits are prevalent. The two

architectures given represent the two basic process styles : sensitivity lists and wait

statement. Both architectures assign a new value to the output only on a rising clock edge. In

architecture 1, the first if statement is executed each time signals a, b, select, or clock are

updated but doesn't become true until a rising clock edge. The edge is detected using the

predefined attribute 'event. This attribute returns True when an event has just occurred on

the attributed signal and False otherwise. In architecture 2, the process suspends at the wait

statement until a clock rising edge. It then executes and suspends again at the wait

statement. These two examples demonstrate two different methods of achieving the same

result, a situation which occurs often in VHDL.

3.3.2. Signal Assignments

Signals may also be assigned values outside of processes1 0 . All forms of signal

assignment outside of processes are concurrent in nature. For example, the following two

assignments occur simultaneously

10 A duality, discused in aection 3.3.4, exista between signal asignments inside and outside of

processes.

2B

architecture example of example in
begin

a <b + 1;
c <-b + 3;

end example;

VHDL also offers the modeler selected signal assignments, which are essentially case

statements, and conditional signal assignments, which are essentially cascaded if-then-

else statements (section 3.2.1.2 contains an example).

3.3.3. Bkcks

Blocks are used in VHDL to organize groups of concurrent statements within an

architectural body. The main advantage of blocks is that the block declaration can include a

guard expression. This expression can be used to control signal assignments within the

block1 1 . Including a guard expression has the effect of creating an implicit Boolean signal

within that block called "guard" which is True when the guard expression evaluates to True

and False Atherwise. Signal assignments within the block can be made conditional on the

guard signal by using the reserved word guard. Figure 3-3 illustrates this technique. The

signal test is only assigned the value '0' on the rising edge of the clock because it is a guarded

assignment. As we will see in chapter 5, blocks can be used to ,ncdel state machines.

architecture block examrle of olock-example is
signal test : bit;

begin
example : block (clock = 'I' and clock'event)
begin
test <= guarded '0' after 1UU ns;

end block;
end block examnple;

Figure 3-3, Block Example

3.3.4. Duality

VHDL has a very strong duality between concurrent and sequentially executed

statements. If an action is implemented using concurrent signal assignments, there is an

equivalent way to do the same thing using a process statement. The following example

demonstrates this duality:

11 Blocks ca7 also have ports and generics just like entities. This is to ensure duality, a concept
discussed in the next section.

29

Concurrent Sequential
process (input)
begin
if input - '1' then

output <- true when input '1' else output <- true;
false; else

output <- false;
end if;

lend process;

VHDL also allows concurrent as well as sequential subprogram calls. Subprogram calls

appearing within a process are sequential while those outside of any process are concurrent.

An exact duality also exists between component instantiations and blocks. An

instance of a component inside an architecture can be replaced with a block statement with

the same ports and generics as the component.

30

4. Motivation for Modeling

With all the hoopla surrounding VHDL, many people are asking 'Why should I use

it? This chapter attempts to answer that question. It shows how VHDL can be used to shorten

the design cycle and improve the quality of designs. In a few short years, VHDL will become

ubiquitous in the digital design realm.

It is important to note that at the present time VHDL is not universally applicable to

digital designs. Most of the tools are still too immature and standard model availability is

still too limited for VHDL to be used for board-level design. However, tools are immediately

available for ASIC design.

The first section discusses how to apply top-down design with VHDL. Subsequent

sections cover the advantages VHDL has over gate-level design. These relate to design and

description, concurrent design, complexity, and verification. The final two sections discuss

when not to use VHDL and caveats for its use.

4.1. Top-Down Design

One of the great powers of VHDL is that it encourages true top-down design 12 . This

methodology specifies that a design begins at a very abstract, behavioral level and is

gradually worked down to a structural (gate) level. Each successive abstraction level is

tested against the previous higher level for equivalence. Figure 4-1 displays the top-down

method symbolically [Pain91]. Each lower level in the pyramid represents a more complex,

less abstract step in the design cycle.

12 This in not to may that low-level design decisions can be completely deferred until the end. True top-
down design typically means designing from the middle-out.

31

Top Down Design Pyramid

Level 1 Specification and Requirements

Level 2 Behavioral Modeling

Level 3 Register Transfer Level

Level 4 Gate Level

Level 5 Layout and Back-Annotation

CHIP

Figure 4-1, Top-Down Design Methodology

A true top-down design methodology can greatly simplify ASIC design. To see this,

let's examine a typical design cycle with and without VHDL. Figure 4-2 shows the

traditional design cycle (no VHDL). In general, the first task is to functionally specify the

system - what inputs the design has and the functions it performs on those inputs to produce

the output. A testing strategy is also developed at this poinL The design is then parceled out to

the members of the design team who begin drawing schematics, writing Boolean equations,

and performing various other low-level design tasks. This is equivalent to skipping the

second level of the pyramid. Concurrently, test vectors are generated. As each partition is

completed, it is tested and revised, if necessary. When all partitions are complete, they are

assembled and tested. At this point, the design, unless it is very small, will probably not

work. Several (possibly extensive) revisions must be made before the design is complete and

ready for placement, routing, and final simulation. If major architectural changes must be

made the design will require extensive modifications. Thus, this method requires that a

system be well-specified before actual design takes place to avoid compromising

performance and/or functionality later in the design cycle.

32

Specificwation and
Testing Strategy

H tigh-Level

extensively revise Partitioning

Schematic 1Test Vector
Generation Development

Block Level
Verification

revise

Integration and
Full Syte
Verification

Design Place and I
Route

Final Simulation

Figure 4-2, Conventional Design

Figure 4-3 shows the same design process using VHDL. This process follows the top-

down methodology much more closely than does the conventional approach. The first two

steps are again system specification- testing strategy and high-level partitioning. The third

step when using VHDL is to develop behavioral models of the high-level components. These

models are verified separately, "assembled" and tested with the VHDL testbench. Revisions

at this level are inexpensive since even a complete redesign involves rewriting a relatively

small amount of code. High-level architectural trade-offs can be made at this point. Once

this initial model is complete, it can serve as the reference for subsequent, more structural

models. Using VHDL at this level has the further advantage of allowing incremental testing

of components. For example, if one team finishes their section before the others, their section

can be substituted into the model in place of the behavioral model and tested by changing

33

configurations. The use of VHDL causes only minor revisions with respect to the level of

abstraction at which they exist. In other words, the most radical modifications to the design,

such as architectural tradeoffs, are made at the higher levels of abstraction where they are

more tractable.

Fspeif-cation andTesting Strategy

As Figur 4-3 furhridctets evel omncaocusi lteulywh

Partitioning

mVHDLavioral VHDL eShion4 isVHL Beaifl and pO Lo els of Models of ml Modls of e u tstoe ahlevl.f.bsraions Partions

r- e iV e r i fy
Partiti

Ftigeurie 4-,Top-Down DzesgwthVD

As Figure 4-3 further indicates, test development can occur simultaneously with

model development. A VHDL testench (see Section 4.6) is a very flexible and powerful

means to test a component. This testbeneh, once completed, can be used to test models at every

level of abstraction with little modification.

34

The light grey line from the bottom to the top in Figure 4-3 represents respecification

of the system after the gate-level models have been completed. This could happen if non-

synthesizeable behavioral models are written (such those using access types). However,

writing realistic behavioral models avoids costly redesign.

4.2. Synthesis

VHDL synthesis is perhaps the most exciting aspect of VHDL. Current synthesis tools

are able to directly synthesize register-transfer level VHDL into a gate-level netlist.

Synthesis can be an enormous time-saver. At the time of this writing, the best synthesis tools

are equivalent to a digital designer with 14-15 years experience [Bohm91]. This makes them

suitable for nearly any design.

VHDL synthesis also provides the ability to use VHDL throughout the entire design

process, from concept to silicon. Even without synthesis capability, though, VHDL would still

be very useful Its use would cease at the RTL level where conventional design techniques
would be more efficient. Synthesis avoids the need for this break in the top-down design

methodology.

4.3& Design and Description in One

Another feature of VHDL is that it is actually two languages in one: a design

language and a description language (Wax89]. Thus, it is useful for designing, testing, and

documentatie .! well written VHDL model is, in fact, self-documenting. Unlike a

schematic diagram, which is practically useless in determining a system's overall

function, a VHDL model (with accompanying testbench) can be read by humans and

simulated by a machine, thereby forming a bridge between function and representation.

As a description language, VHDL is impressive in its ability to convey a designers

intent, The downside to this is that VHDL is very verbose (like Ada). However, using VHDL

becomes second nature after a couple of months and many tools are available which help the

designer cope with the verbosity 13 .

13 For example, entity-architectureconfiguraeon templates can be used to avoid retyping.

35

4.4. Concurrent Design

VHDL modeling, due to the properties of the design entity, can proceed concurrently

with testing. Furthermore, different designers can work on separate subsections

independently and expect their various components to work together. All that is required is

agreement on interfaces and function.

4.5. Complexity

VHDL provides many features for managing design complexity. First, VHDL

supports design at all levels of abstraction, from the algorithmic level to the gate level 14 .

Thus, when a design is in its infancy, its function can be specified as an algorithm which

operates on abstract data types such as records, arrays, and integers. As the design matures,

the abstract components can be replaced with models which operate on bits and bit vectors and

specify their behavior using concurrent signal assignments.

Another complexity management feature is the configuration statement. Using the

power of the configuration statement, one of several models can be selected for testing. Also,

configurations allow the same component to be wired in with different generics. An example

of this is a design which requires many NAND gates, some of which have different timing

than the others. Configurations also allow the re-wiring of a components ports. This could be

used in fault-testing, for example, to determine the affect of wiring a pin to ground.

4.6. Verification

VHDL makes the power of a complete, general purpose programming language

available to test a design. It allows the designer to use complicated dynamic test structures

and sophisticated hardware handshaking to test a design. VHDL provides these capabilities

in a simulator independent manner. While some simulator command languages have the

previously mentioned capabilities, none are portable across simulators. A VHDL testbench

is guaranteed 16 to run on any simulator which supports VHDL since VHDL is non-

proprietary.

14 Transistor-level modeling can be done [RW 891, but it is much more difficult because VHDL has no
direct constructs to support analog behavior.

15 The TEXTIO package is an exception to this rule since it is ambiguously defined in the LRM.
Portability may not be perfect if this package is used.

36

Another VHDL verification advantage is that functional test vectors can be derived

directly from the testhench with little or no modification. VHDL practically eliminates the

problem with ASICs passing foundry vectors but failing to work in the system.

Because VHDL is a DoD and IEEE standard, designs produced today using VHDL

can still be simulated five years in the future, even if the original tool is no longer available.
Thus, effort expended in VHDL modeling is never wasted because the standard insulates the
modeler from company failures and tool obsolescence. Furthermore, VHDL models will

accelerate re-implementation of A design at a later time.

4.7. When not to Use VHDL

Though VHDL can be extraordinarily useful, there are situations where it should not
be used (at least currently). One such instance is in designs with mixed analog and digital

hardware. VHDL simply cannot adequately model the analog section, though some people

claim it can. VHDL could be used to model the digital section (with all the benefits thereof).
However, a full system simulation would be very difficult since a link between the analog

simulator and VHDL would have to be established (via files, pipes, etc.). Mixed analog-

digital designs complicate simulation and verification.

Another situation in which the advantages of using VHDL are diminished is in

incrementally updating a previous design which didn't use VHDL. In this case, a VHDL

model of the entire design would have to be written and verified from scratch. If the ix is
minor, VHDL probably shouldn't be used. However, if the design might be re-targeted to a

different technology at a later date, developing a VHDL model and testbench for it would not

be in vain.

4.8. Caveats

Throughout this chapter I have attempted to explain the overwhelming advantages of
using VHDL for digital design. This final section lists some warnings about using VHDL.

to The strongest caveat deals with transitioning a design from the behavioral level

to the structural level. The smoothness of this process depends in part on the port

types of the entities in the original behavioral model. Types which are easily

translated to bit representations make for a smoother transition. Another danger

lies with non-buildable constructs. Writing unbuildable code in VHDL is easy,

37

so care must be taken to avoid constructs with no hardware analog, such as access

types (access types are pointers).

Though VHDL possesses tremendous power for testing, it cannot test all designs.

For example, if a design requires a large number of test vectors which can only be

produced using a random algorithm, VHDL cannot do the job. In this case, a C

language program could be used to write test vectors to a text file which the VHDL

testbench could then read in and apply1 6 .

Some people may look upon VHDL as the death blow to hardware engineers. They

may point out that developing VHDL models is the task of software engineers.

They could not be more wrong. Though software engineering principles are

necessary in managing model development, coding in VHDL is much like

designing hardware.

The need for careful planning at the inception of a design has not been

eliminated. With excellent synthesis tools available, it is tempting to begin

"playing" with the tool immediately after a design has begun. This is

unproductive. A thorough understanding of aggregate hardware requirements is

necessary before synthesis should be attempted.

16 This is what I had to do with the cmebord VHDL model.

38

5. Behavioral Modelng deraons

The purpose of this chapter is to present issues related to abstract behavioral modeling

in VHDL. An abstract behavioral model is one in which very little implementation specific

information is used. For example, records and integers are used instead of bits and

bit-vectors. The advantage of abstract modeling is that such things as data path width and

address spaces are deferred until the implementation phase of the design. The disadvantage

is that, before the model can be converted to a physical behavioral model, the entity

declarations must be changed. This can be difficult and time-consuming in a concurrent

design environment. Yet, for an algorithm as complicated as the scoreboard's, the

advantage of quicker and easier functional verification outweighs the need to rewrite entity

declarations.

The first section discusses the various methods for modeling state machines. State

machine modeling is important because the scoreboard model contains many state

machines, as will most vW-)i, models. The second section covers high-level modeling

considerations such as synchronous designs and timing. The third section discusses how to

use VHDL's compilation dependencies. The fourth section discusses the use of resolution

functions in behavioral modeling, while the final section talks about the use of subprograms.

5.1. State Machine Modeling

The state machine is one of the basic components in almost every digital design. As

such, the need will often arise to model state machines in VHDL. This section discusses four

methods for modeling state machines. The unifying example is of the simple state machine

shown in Figure 5-1.

39

onto

outl ='O ul=O
out2 = '0' control = '0' out2= T

control = '0'

Figure 5-1, Example State Diagram

Figure 5-2 contains the package used by all the examples. It abstracts away the input

and output types and provides constants for their active states. With this method, it is very

easy to change from, for example, active high to active low logic. Notice that the state type

includes four states but the example state machine only requires three states. This disparity

will be used later on to demonstrate how the four methods handle trap states.

40

PACKAGE state machine_package IS
TYPE statetype IS (sO,sl,s2,s3);
SUBTYPE control-type IS BIT;
SUBTYPE outputtype IS BIT;

CONSTANT clock active : controltype;
CONSTANT control active control type;
CONSTANT output_active outputtype;

ENd statemachine_package;

PACKAGE BODY state_machinepackage IS

CONSTANT clock active : control-type :- '1';
CONSTANT control active control type :- '1';
CONSTANT outputactive outputtype :- 'i';

lD state machine package;

Figure 5-2, State Machine Package

The entity declaration for the state machine is contained in Figure 5-3 below. The two

generics, output-delay and state-delay, are used in adding delay to signal assignments.

The control port is used to control the state transitions, while the reset port sets the state to sO

when active. The clock controls the transitions, and out1 and out2 are the two outputs.

ENTITY state-machine IS
GENERIC (

output-delay TIME := 1 ns;
state-delay TIME 1 ns

PORT
control,reset : IN control-type;
clock : IN controltype;
outl,out2 : OUT output type

END state machine;

Figure 5-3, State Machine Entity Declaration

Perhaps the best method for modeling state machines in VHDL is with a CASE

statement on a state signal within a process. A variable, typically called nextstate, is

assigned based on the current state and the inputs. The state signal is assigned at the end of

the process. Figure 5-4 shows an example of a state machine with a CASE statement.

41

ARCHITECTURE best OF state machine IS
SI AL state : state_type;

BEGIN
machine : PROCESS (clock,reset)
VARIABLE nextstate : state-type;
BEGIN
IF reset - control active THEN

next state :- sO-
ELSIr clock = clock active AND clock'EVENT THEN
CASE state IS

WHEN so =>
outl <- NOT outputactive AFTER output-delay;
out2 <- NOT outputactive AFTER output-delay;
IF control - control active THEN

next state :- sl;
outl <- output active AFTER output delay;
out2 <- NOT output-active AFTER output delay;

END IF;

WHEN sl ->
IF control - control active THEN

next-state :- s2;
outl <= NOT outputactive AFTER output-delay;
out2 <- outputactive AFTER output-delay;

END IF;

WHEN s2 =>
IF control = control-active THEN

next state :- sl;
outl <= output active AFTER output delay;
out2 <= NOT output active AFTER output delay;

ELSE
next state := sO;
outl <- NOT output active AFTER output-delay;
out2 <= NOT output-active AFTER output-delay;

END IF;

WHEN OTHERS ->
next-state := sO;

END CASE;

state <= nextstate AFTER statedelay;

END IF;
END PROCESS;

END best;

Figure 5-4, CASE Statement Example

The first action of the process is to check for reset. As written, the reset is

asynchronous. It can be made synchronous by making the first IF clause sensitive to the

clock and then checking for reset. If reset is '1', the next state is set to sO, otherwise the normal

state transition checks are performed. An IF clause within each WHEN clause controls

transition to the next state. If a state transition condition is met, the next state is assigned.

Nothing needs to be done if no transition occurs because the outputs retain the last value

assigned to them. The output values (shown within the circles in Figure 5-1) are also set

42

within this IF clause. A WHEN clause is included for all valid states. The fimal WHEN

clause ensures that any invalid states (trap states) cause the next state to be sO. The final

signal assignment assigns the nextstate "ariable to the state signal.

A variation on the CASE method is contained in Figure 5-5. It splits the state machine

into synchronous and asynchronous parts. The synchronous process assigns the next-state

signal to the state signal on a rising clock edge. The asynchronous process takes care of

output and next state assignments. The main difference between Figure 5-4 and Figure 5-5 is

that the output assignments occur asynchronously in Figure 5-5. The functionality is exactly

the same otherwise.

43

ARCHITECTURE also_good OF statemachine IS

SIGNAL state,nextstate : state-type;

BEGIN

asynchronous : PROCESS (state,control)
BEGIN
CASE state IS

WHEN sO ->
outi <- NOT output-active AFTER output-delay;
out2 <- NOT output-active AFTER output-delay;

IF control - control active TRI
nextstate <- sl;

END IF;

WHEN si =>

outi <= outputactive AFTER output delay;
out2 <= NOT output active AFTER output delay;

IF control = control active THEN
next-state <= s2;

END IF;

WHEN s2 ->
outl <= NOT output active AFTER output-delay;
out2 <= outputactive AFTER output-delay;

IF control = control active TEW
next-state <= Sl;

ELSE
next state <= sO;
ND IF;

WHEN OTHERS =>
next state <= sO;

END CSE,
END PROCESS;

synchronous : PROCESS (clock,reset)
BEGIN
IF reset = control active THEN

state <= sO AFTER state delay;
ELSIF clock = control act ve AND clock'EVENT THEN

state <= nextstate AFTER statedelay;
END IF;
END PROCESS;

END also good;

Figure 5-5, CASE Varation

There are many advantages to the CASE method (both variations). First, the CASE

method is very clear. It is not difficult to recognize the correspondence between the VHDL in

Figures 5-4 and 5-5 and the state diagram in Figure 5-1. A second advantage is that it is not

limited to simple state machines. It can handle any number of-states (though the CASE

statement becomes unwieldy with too many states) and any number of inputs and outputs.

The later methods do not share this advantage. Also, with the CASE method it is very easy to

44

add either synchronous or asynchronous reset capability and trap state handling. Finp'ly,

the CASE method is directly synthesizeable by VHDL synthesis tools such as the Synopsys

Design CompilerV [Syn90].

A second method for modeling state machines was presented by Armstrong in his

book [Arm87]. It uses nested BLOCKs and guarded signal assignments. Figure 5-6 contains

an example. The state signal is declared as a REGISTER. Registered signals retain the last

value assigned to them when all their drivers have been disconnected (through BLOCK

guards evaluating to False)1 7 . The outer BLOCK is guarded on the rising edge of the clock,

while all inner BLOCKs are guarded by the Boolean AND of the outer guard and their

respective states. The outputs are assigned based on the value of the state signal.

17 For more information, se Chapter 5 of VHDL H ardwa Dhscrtian d Dmjn.

45

ARCHITECTURE block state-machine OF state-machine IS

TYPE state_arraytype IS ARRAY (NATURAL RANGE <>) OF state type;

FUNCTION state resolver (statearray : IN statearraytype)
RETURN state t-ype IS
VARXABLE resolvedvalue : state-type;
BEGIN
FOR i IN statearray'RANGE LOOP

resolvedvalue :- statearray(i);
END LOOP;
RETURN resolvedvalue;

SIGNAL stateregister : stateresolver state-type REGISTER;

BEGIN

synchronous : BLOCK (clock = clockactive AND clock'EVENT)
BEGIN

stateO : BLOCK (((state register - sO) AND guard)
OR (reset - control active))

BEGIN

state register <= guarded sl AFTER state delay
WHEN control = control active ELSE sO;

END BLOCK stateO;

statel : BLOCK ((state register - sl) AND guard)
BEGIN

stateregister <= guarded s2 AFTER statedelay
WHEN control - control-active ELSE si;

END BLOCK statel;

state2 : BLOCK ((stateregister = s2) AND guard)
BEGIN

stateregister <- guarded sl AFTER statedelay
WHEN control - control-active ELSE sO AFTER statedelay;

END BLOCK state2;

outl <- outputactive AFTER output delay
WHEN state-register = sl ELSE NOT output_active;

out2 <- output_active AFTER output delay
WHEN stateregister - s2 ELSE NOT outputactive;

END BLOCK synchronous;
END blockstatemachine;

Figure 5-6, Nested Block Example

The advantages of this method are that, once again, the correspondence between the

VHDL and the state diagram is good. Adding a synchronous reset is also simple. The

disadvantages of this method are that a BLOCK must be written for each possible state and

each output must have its own selected or conditional assignmenL Thus, this method

becomes unwieldy for even medium size state machines. One final disadvantage is that the

author was unable to get it to work. In sum, this method should be avoided.

46

One final method for implementing state machines is through a conditional signal

assignment statement. Figure 5-7 contains an example. The state transitions and output

assignments are placed within WHEN clauses. Trap states are handled by the final WHEN

clause. Sate assignment is done inside a synchronous PROCESS.

ARCHITECTURE ugly O statemachine IS
SIGNAL state,nextstate : state-type;

BEGIN
next-state <- sO W1W ((reset - controlactive) OR

((control - NOT control active)
AND (state - s2))) ELSE

sl WEN (((state - sO) OR (state - s2))
AND (control- controlactive)) ELSE

s2 WNJ ((state - s1)
AND (control - controlactive)) ELSE

sO;

outi <- output active AFTER output delay
WHEN state = sl ELSE NOT outputactive;

out2 <= output active AFTER output delay
WHEN state - s2 ELSE NOT output active;

synchronous : PROCESS(clock)
BEGIN
IF clock = control active AND clock'EVENT THEN

state <- nextstate AFTER statedelay;
END IF;

END PROCESS;

END ugly;

Figure 5-7, Conditional Signal Assignment Example

The conditional signal assignment method suffers from a lack of clarity. By

duality, Figure 5-7 could be replaced with an equivalent PROCESS closely resembling that of

the CASE method in Figure 5-4. Thus, in general this method should be avoided and the

CASE method used instead.

5Z Synchronous deigns

When constructing abstract behavioral models, it is critical that fundamental

assumptions about the underlying hardware not be violated. One such assumption is

synehronicity. Just because the model is abstract doesn't mean that this basic notion of

47

digital hardware can be violated. Thus, it is good practice to make all processes sensitive to a

clock edge 18 unless that process is modeling a section of combinational logic.

A side effect of constructing synchronous models is that reasonably accurate

performance estimates can be obtained very early in the design process. The performance

information is derived from the number of clock cycles the model requires to perform its

functions. The information is accurate only if reasonable assumptions about underl)ing

hardware operations are made. For example, it is unreasonable to assume that an integer

multiply will be completed within 40 ns, but it is reasonable to assume that a memory read

will require two clock cycles. This knowledge can be built into the model via a state machine

which asserts an address and then waits one clock cycle, for example. Such performance

estimates can then be used to assist in the specification of related components.

5.3. Timing

Realistic timing does not belong in an abstract model since such information cannot

be extracted from the design at this stage. However, dummy delays are useful for making

signal transitions more visible. Without them, all transitions occur one delta delay after an

assignment, thereby making waveform displays more difficult to read. Readability is thus

enhanced by adding a delay to all signal assignments. Such a delay can be an integral

division of the clock period, for example.

5.4. Compilation Deendences

VHDL's compilation dependencies, illustrated in Figure 5-8, can be used to the

designer's advantage. Modifications made to higher level design units require

recompilation of all lower level design units which reference it. VHDL allows separate

compilation of package headers and bodies. Modifications made to the package body only

require that the body be recompiled. Modification of the package header requires that all

design units referencing that package be recompiled. Thus, it is good practice to separate the

package body and header. The one exception is that modifying types or subtypes will always

cause the package header to need recompilation since these declmiations cannot be deferred

to the package body.

18 Of course, if asynchronous hardware is being modeled this should not be done.

48

..

Package
Header

Architecture

Configuraion

Figure 5-8, Compilation Dependencies [VHDL90]

The organization of packages can drastically affect recompilation. For example, if

one package is used to define all types, constants, and subprograms, then nearly every

design unit will have to reference the package. It is better to organize packages by function,

i.e. place related constants, types, and subprograms together in the same package. This way,

only a few design units will reference each package, thereby reducing recompilation if the

package headers need to be modified.

5.5. Resolution functions

Resolution functions can be very useful in abstract behavioral modeling. However,

their use is fundamentally limited by their physical interpretation of resolving the value of

signals with more than one driver. In the case of the logic resolution function included with

all VHDL simulators, this interpretation is intuitive since all digital designers know that,

for example, a high-impedance, or 'Z', and a '1' result in a '1', and a '1' and a '0' result in an

unknown c. ndition, or W. What if, however, a record type signal requires multiple drivers?

A resolution function can be written for a record type, since any type may be resolved. This

can be done by adding a Boolean field to the record called ahighez" (or similar). The

resolution function can then be written to ignore all drivers whose highz field equals True.

Similarly, a highz value can be added to enumerated types and resolution functions written

to ignore all such values. The only problem is deciding what value to assign when more than

one non-highz driver exists (this is usually an error which could be flagged by an ASSERT

statement).

49

The multiple driver problem usually arises in abstract behavioral modeling of data
buses. An example should make things clearer. When constructing a model for a memory,

it is natural to make the data port of mode inout. If this is done, then the port type must be

resolved since both the memory and whatever is trying to write to the memory will be driving

the port. If the memory stores abstract data such as records or enumerated types, a resolution

function must be written in accordance with the guidelines mentioned in the previous

paragraph. Another, somewhat simpler solution is to add explicit input and output ports to the

memory. No resolution function is required, but the model is less clean.

But what about the address input to the memory ? Oftentimes, more than one signal

will need to assert an address. Should a port be added for every such signal? To avoid port

proliferation in this case, a resolution function should be written. This solution makes sense
since, in general, all addresses in a given model will be of the same base type (i.e. integer).

A high-impedance address can be chosen (such as -1 or integer'right) and the resolution

function designed to ignore all drivers of that value. An example of such a function is given

in section 7.2.1.2.

5.6. Subprograms

Subprograms are a very useful abstraction mechanism in behavioral modeling.

They can be used to perform complex functions for which a hardware method does not yet

exist. For example, in the initial scoreboard model, voting is done via multiple procedures

and functions. Constructing the voter in this manner allowed the modeling to proceed

quicker. Furthermore, if the subprograms are placed in a package, modifying them will

require a smaller recompilation penalty than modifying architectures.

5D

6. Scoreboard Functonal Desciptm

This chapter contains the complete functional description for the scoreboard. The

first section covers the SERP and CT formats. The second section discusses the overall

design goal, which is to optimize the common case. The third section discusses in depth the

two major SERP processing phases. The final two sections cover fault conditions and the

other functions the scoreboard must perform.

6.1. SERP Format

Each SERP entry has the form given in Figure 6-1. Each field is 8 bits wide, making

each entry 32 bits in length.

Itdontr I I Exchange Class

Destination VID user byteI

Figure 6-1, SERP Entry

The first byte contains the OBNE and IBNF bits for that PE. The rest of the bits are

unused. The second byte contains the exchange class. A breakout of the bits in this field can

be found in section 6.3.3.2. The third byte contains the destination VID for the message (if

any), while the fourth byte is user defined. The exchange class, destination VID, and user

byte are considered invalid by the scoreboard unless the OBNE bit is set.

6.2. CT Format

The form for a CT entry is shown in Figure 6-2. Each field is eight bits wide and the

entire entry consumes 8 bytes.

51

Cr Entiry

VID number

redundancy
level

presence bits

timeout value
7 5 4 0

PID0 NE number PE number

PID 1

PID 2

PID 3

Figure 6-2, Configuration Table Entry

The first entry is the VID number, which can take on any value between 0 and 25519.
The second field contains the redundancy level. The redundancy level can be either zero

(for a non-active VID), one, three, or four. The third entry contains the presence bits. The

form for the presence bits is shown in Figure 6-3. A presence bit is set when the VID has a

member on the corresponding NE. The fourth entry is the value to use when calculating

timeouts on the VID (how this entry is used is explained in section 6.3.1.4). The next one to

four bytes contain the PIDs of all the VID members. The form of the PID is shown to the right

of Figure 6-2. It is a simple encoding of an (NE,PE) pair - three bits for the NE and five for

the PE. This allows a theoretical maximum of 8 NEs with 32 PEs each, more than enough for

any realistic configuration.

x x x NE4 _ NE3 NE2 I NE1 NEO

Figure 6-3. Format of the Presence Pits

19 Currently, the entire CT is composed of 256 entries (one for each possible VID). Thi% could easdly be
reduced to save memory.

An example CT entry for a triplex is shown in Figure 6-4. The redundancy level

field is Binary'011", or three, and the presence bits reflect the fact that the VID has members

on NE's zero, two, and four. The fourth entry is the timeout value, while the last three entries

are the PIDs of the members.

CrEntry
Redufldanl Lvel VID #

0 1 1 od redun
presencei/= ,-°17

Presence Bits
1m

/ NE,PE.4 member 0

10 1 0 1 NE2,PEO memberi1

NE4,PE6 member 2

null

Figure 6-4, Example Coriguration Table Entry

The entire CT, composed of 256 CT entries, is stored as a single block in memory.

The entry for a given VID can be retrieved by multiplying the VID number by eight (or

shifting it three places to the left) and using offsets 0 -7 to retrieve specific fields.

6.3. Goal: Optimize The Common Case

With most digital hardware, speed is of the essence. The scoreboard is no exception.

In this case, speed can mean the difference between a viable real-time fault-tolerant parallel

processor and a nifty laboratory prototype. This is because message passing latency is

critical to real-time systems such as the FrPP. The scoreboard has a dominant affect on the

latency of inter-processor messages on the FTPP.

The scoreboard SERP processing latency is the time span between the NE's global
controller signalling the scoreboard to begin processing a new SERP and detection of the

first ready message in the current SERP (assuming a valid message exists within that

SERP). This latency limits the iteration rate of periodic tasks on the FTPP.

The scoreboard is designed to optimize SERP processing as much as possible. The two

most common actions in SERP processing are voting and checking timeouts. Voting is a

53

f

common operation since all information in the SERP must be voted before it can be used by

the scoreboard. However, the commonality of checking timeouts is not so obvious.

Consider a triplex which desires to send a message. Because the PE's composing the

triplex are only loosely synchronized, one of them will be slightly behind the other two (but

still within a bounded skew, as per the synchronization requirement of Byzantine

Resilience). The lagging PE will set its OBNE bit after the other two. It is probable that, since

a SERP cycle is shorter than the maximum skew, the scoreboard will see two asserted OBNE

bits and one unasserted one. Though the lagging PE is not faulty, a timeout will have to be set

becaube unanimity does not exist. If the PE responds before the timeout expires, the PE

remains non-faulty and synchronized with the remaining PEs. If the timeout expires, the

faulty PE is ignored. IBNF timeouts are handled in a similar fashion.

6.4. SERP Processing

In processing the SERP, the scoreboard passes through two phases. First each VID's

SERP entries are voted and written into an intermediate storage called the voted SERP

memory. Then the voted SERP is scanned for valid messages. This is the parallelization of

a sequential algorithm presented in the next paragraph.

A sequential algorithm for processing the SERP is shown in Figure 6-5 [Mor91]. The

algorithm assumes the existence of a look-up table which translates a VID number to its

corresponding PIDs within the SERP. This table can be generated from the CT. The

algorithm begins by reading the OBNE bits of the first VID and voting them. If the result is

unanimous (or majority plus timeout), it votes the destination VID field 2 0, pulls its entries

out of the SERP, and votes their IBNF bits. If the IBNF result is unanimous (or majority plus

timeout), the exchange class and user bytes are voted and the message sent.

20 For the mke of brevity, Ill ignore the pcial cam of broadsts. The algorithm is essenially the
Ome without them.

54

Bad ID
vw.o*N bit*
ebhek Unmants

Figure 6-5, Sequential Scoreboard Algorithm

This algorithm, while ideal for a computer program, has problems when translated to

hardware. The first problem is voter utilization. In the algorithm as presented, a hardware

voter would be idle while timeouts were being checked. It makes sense to pipeline the voting
such that the OBNE and IBNF bits are voted first and the other SERP fields are voted while

timeouts are being checked.

The existing scoreboard algorithm reflects the pipelining idea. It uses on-board look-

up tables extensively for efficient indirection. The penalty, besides additional memory, is

longer reset and CT update times since the look-up tables must be regenerated after these

operations. The remainder of this chapter functionally describes the scoreboard. Chapter 7

55

discusses the execution of these functions in greater detail. A flowchart representation of the

entire algorithm can be found in Appendix 10.1.

6.4.1. Voting

Because of the special nature of the scoreboard, it cannot use a generic, four way, bit

for bit majority voter. This is unfortunate since many such designs already exist. The

scoreboard voter varies from conventional designs in the following ways:

) The voter has different rules for determining the majority result based on the

redundancy level of the input and the data being voted.

* The voter is not masked in the normal sense.

(M Syndrome generation changes based on the redundancy level of the input and on

the location of the VID's members.

6.4.1.1. Majority Rules

The scoreboard uses the following rules for determining if a majority of the inputs

agree :

Redundancy Level Type of Data Majority
simplex OBNE 1 of 1
simplex IBNF 0of 1
simplex data bit I of 1
triplex OBNE 2 of 3
triplex IBNF 2 of 3
triplex data bit 2 of 3
quad OBNE 3 of 4
quad IBNF 3 of 4
quad data bit 2 of 4*

3 of 4 in alm a valid majorty for a quad.

The first column specifies the redundancy level of the input. The second column

specifies the type of data being voted, whether OBNE, IBNF, or data. Data includes the

destination VID, exchange class, and user byte. The final column indicates the number of

inputs which must be asserted, or '', for the majority condition to exist. Two cases are of

special note. The first is the case of voting the IBNF bit of a simplex. The 0 of I majority

condition specifies that a timeout should be set on a simplex whenever its IBNF bit is not set.

This prevents a faulty simplex from holding up VIDs trying to send it messages. The second

56

notable case is that of voting quads. For the OBNE and IBNF bits, an unambiguous majority

is required (3 of 4), while data requires only 2 of 4 to agree. This ensures that if a two-two split

occurs (two members say one thing, two another) when voting either the OBNE or IBNF bits

the "safe" option is taken. It is better to not send a message or risk overwriting a PE's input

buffers until a clear manifestation of faulty conduct is seen. Since there is no clear usafe"

option for data, either 2 of 4 or 3 of 4 may be used.

6.4.1.2. Masking

The scoreboard's voter is not maskable in the normal sense of "masking out" some

input bits to prevent them from contributing to the voted result. Instead, inputs are masked

automatically based on the redundancy level. Conceptually, the voting logic contains four

pipeline registers, numbered 0 to 3, which feed the voter (reference "',gure 6-6). When voting

a simplex, the value to vote will always reside in register 0. When voting a triplex, the values

will always reside in registers 0 to 2. Values for a quad will occupy all four registers. Inputs

are voted based on the redundancy level and the data type as described in section 6.4.1.1.

Because of this arrangement, no inputs need to be masked out. Figure 6-6 shows the

conceptual representation of the scoreboard voter.

57

fauty E oul b make u toprven i frmVonter btn to tVoted result . oeei

rfer 0 ----

input

Syndromee

Figure 6-6, Conceptual View of the Voter

An implication of this is that, for example, a triplex always has three values to vote,

even if one of those values originates from a faulty PE. In general, the data from a known

faulty PE would be masked out to prevent it from contributing to the voted result. However, if

reintegration of the faulty PE is desired, it must be allowed to participate in the voting so that

it can be checked for continued faulty conduct. If it was masked out, there would be no way to

check if the fault was transient or permanent. The disadvantage of this method is that, for

permanently faulty PEs, the full timeout period must be paid each time a message is sent or is

received by the VID until a CT update can be performed (see section 6.6 for a further

explanation of CT updates).

6.4.1.3. Syndromes

The scoreboard voter must produce three different syndromes - OBNE, IBNF, and

data syndromes. The syndromes are in CT-absolute format (see Figure 6-7), which means

that each bit corresponds to a PID in the VID's CT entry, with the least significant bit

corresponding to the first member in the VID's CT entry. A bit is set in the OBNE and IBNF

58

syndromes when a member of the VID times out. Bits corresponding to non-existing

members are guaranteed to be '0'. For example, if the OBNE bits for the triplex presented in

section 6.1 are :

member 1 : uet

member 2: not set

member 3 : et,

then the voted result is OBNE set and the OBNE syndrome will be as shown in Figure 6-8.

The syndrome bit for member 2, which is the second least significant bit, is set. The

syndrome bits for members 1 and 3 are unset. The other syndrome bit, which corresponds to

the non-existent fourth member, is a '0'.

member 4 1member 31 member 2 1meme1

Figure 6-7, Syndrome Format

0 1 0 1 1 07

Figure 6-8, Example OBNE syndrome

The third syndrome produced by the scoreboard, the data syndrome, is generated

differently then the other two syndromes. It is generated by OR'ing the syndromes from the

destination VID, exchange class, and user byte. A set bit in this syndrome indicates non-

agreement in one or more bits in one or more of those fields. As with the other two syndromes,

bits corresponding to non-existent PEs are '0'.

6.4.1.4. Timeout Procedure

A timeout is set on a VID when a majority, but not a unanimity, of its members set

their OBNEIIBNF bits. It is important to realize that majority conditions on these two SERP

fields are the only conditions under which timeouts are set. The destination VID, exchange

class, and user byte fields have no affect on timeouts.

The timeout algorithm is as follows (for the remainder of the paragraph, IBNF can be

substituted for OBNE with no change in meaning). When a majority condition is seen on the

OBNE bits, the scoreboard checks to see if a timeout has already been set on the VID. If no

timeout is in progress, the current value of an internal free-running timer is read and

placed in a timeout storage area. If a timeout has been set, the stored value is subtracted from

the current value of the timer. If the difference is less than or equal to the value stored in the

VID's timeout field in the CT then the timeout has not yet expired, in which case the

scoreboard clears the OBNE bit in the voted SERP memory (because the message cannot be

sent yet). If the result is greater than the VID's timeout field, then the timeout has expired and

the scoreboard does nothing to the voted OBNE bit At this point, the VID can send the message

if the other conditions are met (see the following sections for the explicit rules on valid

messages).

The one exception occurs when the timeout field in the CT is zero. If this is the case,

the VID will never time out. This case is useful for debugging purposes and in a situation

where a VID should never time out.

Notice that IBNF timeouts are set on a VID regardless of whether another VID is

waiting to send a message to that VID. This prevents the input buffers of an FMG from being

overwritten. No messages will be sent to an FMG until a unanimity or a majority+timeout of

its members assert their IBNF bits.

6.4.2. Finding Messages

Once the scoreboard has finished voting the SERP and checking timeouts, it searches

the voted SERP for valid messages. The following sections cover message related functions.

6.4.2.1. Valid Exchange Classes

The exchange class byte of the SERP contains three sub-fields: the class, packet type,

and mode. Figure 6-9 below shows their locations.

7 6 5 4 3 2 1 0
~md packet type exchange clas

Figure 6-9, Exchange Class Byte Fields

The class defines the protocol to be used when exchanging the packet. Currently, the

following values are valid (for an in-depth explanation of exchange classes see [Sak9l]):

0-class 0 (no data)

1-class 1 (one round exchange)

6D

2-class 2 (source congruency) from member on network element A

3-class 2 (source congruency) from member on network element B

4-class 2 (source congruency) from member on network element C

5-class 2 (source congruency) from member on network element D

6-class 2 (source congruency) from member on network element E

The packet type defines what the data in the packet represents. Data packets are the

normal mode of communication between virtual groups. Data packets are treated as a

contiguous stream of 64 bytes. There is no structure enforced by the NE on data packets. The

other packet types, however, have specific formats that must be adhered to. The following are

the current valid packet types:

0-data

1-configuration table update

2-isync

3-voted reset

The mode determines how the packet is to be distributed. Currently, the only modes

supported are norrral (bit 7 is cleared) and broadcast (bit 7 is set). In the normal mode, the

packet is sent to the virtual group specified in the destination VID field. In broadcast mode,

all active virtual groups will receive a copy of the - acket (including the sender) and the

destination VID field is ignored.

6.4.22. Invalid Messages

The following is a list of all the conditions under which an otherwise valid message

can be declared invalid. In all cases, the message is "sent", bat the destination is changed to

the null destination (a PID of OxlF). This PID value tells the NE to flush the packet after it

has been received and not deliver it to any PE. The four cases boil down to two different

conditions: invalid destination VID and/or invalid exchange class. A fourth, two-bit

syndrome is generated by the scoreboard to represent the result of these two conditions.

61

* If the Higher Life Form (HLF) bit 21 is set, simplexes are not allowed to send CT

update, broadcast, or voted reset packets.

* If the HLF bit is set, all CT update and voted reset packets must be exchanged

using a class 1 exchange.

* If the exchange class is class 1 the source VID must be a FMG.

• The destination VID field must correspond to a valid VID 2 2 .

6.4.2.3. Searching for Valid Messages

When the voting and timeout process is complete, the scoreboard scans the voted

SERP for valid messages. The Boolean equation for a valid message is :

valid-message = sourceyID(OBNE) AND destinationVID(IBNF)

AND message-info-valid;

OBNE = unanimous OR (majority AND timeout-expired)

IBNF = unanimous OR (majority AND timeout-expired)

A valid message exists when the sender either has a unanimous OBNE or a majority plus

timeout-expired, the destination has either a unanimous IBNF or a majority plus timeout-

expired, and all message information is valid. Once the condition is met but before the

message is sent, the scoreboard clears the destination's IBNF bit since the act of sending a

message to the VID may render it invalid. Thus, a given VID can send a maximum of one

message and receive a maximum of one message per SERP cycle.

When a valid message is found, the scoreboard provides the NE with the following

information:

21 The HLF bit exists to prevent, in a fielded FTPP, a simplex from doing things it is not normally
allowed to do. In the laboratory, though, allowing simplexes to do such things is useful for
debugging.

22 This condition must be flagged internally to prevent scoreboards residing on different NEs from
reaching different results. For example, if the IBNF bit of the voted SERP memory location
corresponding to the non-existent VID was '1' in one scoreboard but V in another (this could happen
since that particular memory location is never written to by the scoreboard), they would reach
different conclusions, thereby introducing a fault which would probably bring the system down.

1. OBNE,IBNF,and data syndromes

2. invalid data syndrome (explained in section 6.4.2.2)

3. Presence bits (used by the NE as a vote mask)

4. NE mask

5. the exchange class

6. t"P , a the local NE where the message can be found

7. the PID on the local NE where the message is to be sent

8. A timestamp

Items 6 and 7 are determined from the source and destination VID's respective CT entries

and by the local NE number. Using the triplex example from sections 6.1 and 6.3.1.3, if the

triplex has a valid message to send to itself, then the scoreboards in the system would provide

the following source and destination PIDs to their respective NEs :

Scoreboard's NE number Source and Destination PIDs
0 NEO,PE4
1 Ox3F
2 NE2,PEO
3 Ox7F
4 NE4,PE6

When an NE does not have a VID member located on it, the scoreboard passes it a null PID of

OxlF (all l's) so that the NE will participate in the exchange but will not deliver the message

to any processor.

6.4.2.4. Message Sending Protocol

After a valid message condition exists and the scoreboard has gathered all the

information necessary to send the message, it writes the data into a special area of memory

and signals the NE to send the message. The scoreboard then continues to search for valid

messages. If another message is found before the NE is finished sending the previous

message, the scoreboard waits until the NE is finished. It then enqueues the new message

and once again looks for more valid messages. When the entire voted SERP has been

scanned, the scoreboard signals the NE that it is finished processing the SERP.

63

6.4.2.5.

Broadcasts are a special form of message which cause the scoreboard to process the

voted SERP differently. As soon as a valid broadcast message is encountered (exchange

class = broadcast AND voted OBNE bit set), the scoreboard ceases to search for any more

messages until the broadcast is sent. It first cycles through the entire voted SERP to check if

all the IBNF bits are set. If they are (which is unlikely), then the message is sent

immediately. Otherwise, the scoreboard votes SERPs until all IBNF bits are set, after which

the broadcast is sent. Once a broadcast is noted, no other packets are exchanged until the

broadcast is exchanged.

The broadcast is very useful for bringing the entire system into synchronization

because no other messages can be exchanged until the broadcast is sent. As a result, the

sender is assured that all PEs in the system receive the broadcast at the same time.

6.4.2.6. Prikwity

The scoreboard has two different methods for determining message priority - VID-

ordered and round-robin. A VID based system assigns priority to the lowest VID number.

This is done by always beginning the scan for valid messages at the start of the voted SERP

memory. The round-robin system attempts to distribute priority so that no VID is favored

over any other. On each SERP cycle, the scoreboard begins looking for valid messages one

voted SERP entry later than in the previous cycle. This system ensures, for instance, that a

babbling simplex cannot effectively shut out a VID by constantly sending messages to it.

6.5. Faulty Conditions

The scoreboard does not perform any fault diagnosis itself. It simply notes an

anomaly and sets the appropriate syndrome bits. In the case of an invalid destination VID or

an invalid exchange class, the scoreboard sets the corresponding invalid data syndrome bit.

The following conditions indicate a fault has occurred:

* A VID times-out from either OBNE or IBNF, or both.

* The OBNE bit for a VID is unanimous, but one member doesn't agree on the

destination, exchange class, or user byte (or any combination thereof).

* The destination VID does not correspond to a valid VID in the system.

64

* The exchange class field has an invalid value.

6.6. Other Ope ons

The scoreboard also performs the following initialization operations:

Synchronize Timer - the synchronize timer operation is used to bring the timers

inside each scoreboard into synchronization. This ensures that all timestamps

are congruent. This operation also causes the scoreboard to delete all pending

timeouts.

CT Update - A CT update causes three actions to occur. First, it forces the scoreboard to

regenerate all internal tables (explained in section 7.1) which are used to index

SERP entries during SERP processing. Second, it deletes all timeouts, since a

VID with a pending timeout may no longer exist after the update. Finally, a CT

update causes the voted SERP processing section of the scoreboard to reset its

internal priority pointer to the first voted SERP entry (if VID-ordered priority is

implemented).

Reset - A scoreboard reset is performed when the NE is first powered-up and

whenever the NE itself is reset. This operation performs a CT update and

initializes the timer to zero.

65

7. Scoreboard Behavioral Model

This chapter describes in detail the operation of the behavioral level model of the

scoreboard. The first section discusses the overall design of the model by explaining

important sections of the code, beginning with the packages and ending with the entities. The

functional description of the model is presented by describing each major operation.

7.1. Overall Design

The scoreboard behavioral model represents the third step, behavioral models of the

high-level partitions, in the design process presented in section 5.1. Chapter 6 contains the

first step, system specification. The second step, high-level partitioning, is presented in the

foll .wing paragraph.

Figure 7-1 below shows the high-level partitioning of the scoreboard. The partitioning

is based on the algorithm discussed in section 6.4. The Voting and Timeout Hardware uses

the Lookup Table to cycle through the SERP, reading a VID's SERP entry each cycle, feeding

them to the voter and checking timeouts. The voted result is written into the Voted SERP

memory. When voting is complete, the Sender, using the VIDS-in-system table, cycles

through the Voted SERP memory looking for valid messages. When a valid message is

found, the message information is written into the Message Info RAM and the NE is told to

send the message. The structure of the tables and how they are generated will be presented in
later sections.

67

I U et S

Figure 7-1, High-level Partitions of the Scoreboard

Once the partitioning had been accomplished, the VHDL models for each partition

were written. The remainder of this chapter covers these models.

7.2. Explanation of Important Sections of Code

The following sections discuss the major sections of the behavioral VHDL model. The
packages are covered first since they abstract away much of the detail and are critical for
understanding the model. The function and interface of each entity is then described.

7.2.1. Packages

The behavioral model relies heavily on packages to allow multiple entities to share
types, constants, and subprograms. The packages are organized by purpose and are usually

associated with only a few entities.

7.2.1.1. Scoreboard pwkage

The scoreboard-package is the global package and thus contains items common to
the entire design. These items include the SERP, CT, and message item data types,
configuration information, and two conversion functions.

68

The package begins with the following declarations which serve to abstract away the

configuration of the FTPP :

CONSTANT numne : INTEGER :- 5;
CONSTANT pejperne : INTEGER := 8;
CONSTANT max vid : INTEGER := 255;
CONSTANT max-redun level : INTEGER := 4;

Because of these definitions, the overall configuration of the FTPP can be changed very

easily. An additional set of constants is used to define the locations in the dual-port RAM of

the SERP, CT, and message queue.

CONSTANT dpram size : INTEGER := 300;
CONSTANT mem base addresstype :f-1;
CONSTANT serp base addresstype 0;
CONSTANT ct base address type dpramsize + 1;
CONSTANT msgbase address_type 2*dpramsize + 1;

The "meat" of the package is the type declarations. The initial declarations abstract

away the types of the sub-fields of the SERP to aid visibility in the simulator.

Flowcontrol_type is used to represent the OBNE and IBNF bits. Vid-type holds the

destination VID number. Broadcast-type, packet-type, and ex.class.type represent the three

fields within the exchange class SERP entry. Class.type represents the exchange class field

of the SERP. Note the resemblance between its three fields and Figure 6-9.

SUBTYPE flowcontroltype IS BOOLEAN;
SUBTYPE vid type IS INTEGER RANGE 0 TO maxvid;
SUBTYPE broadcasttype IS BOOLEAN;
SUBTYPE packettype IS INTEGER RANGE 0 TO 3;
SUBTYPE exclass type IS INTEGER RANGE 0 TO 7;

TYPE class type IS RECORD
broadcast : BOOLEAN;
packet : packet type;
ex class : ex class type;

END RECORD;

The second set of types is used to define CT entry fields. The redundancy level of a VID is

represented by an enumerated type. A zero redundancy level indicates an inactive VID.

Presence-type contains the presence bits field of a CT entry, while timeout-type contains the

timeout field. Members-type holds the addresses of a VID's SERP entries.

TYPE redunlevel-type IS (zero,simplex,triplex,quad);
TYPE presence type IS ARRAY(0 TO (num ne - 1)) Or BOOLEAN;
SUBTTPE timeout type IS INTEGER RANGE 0 TO 255;
TYPE members-type IS ARRAY(0 TO (maxredun level - 1)) OF peloc-type;

The last three types are used to represent an entry in the SERP, CT, or message queue.

They are all records to facilitate encapsulation and clarity. Notice t e direct correspondence

between serptype and Figure 6-1 and between cttype and Figure 6-2. Msgtype contains all

the information necessary to send a message.

TYPE serptype IS RECORD
obne,ibnf flowcontroltype;
dest vid vidtype;
class : classtype;

END RECORD;

TYPE ct type IS RECORD
vid number vidtype;
redun_level redunlevel type;
presence presencetype;
members members-type;
timeout timeout type;

END RECORD;

TYPE msg type IS RECORD
source vid,dest vid : vidtype;
class class_type;
timestamp : TIME;
obne_syndrome,ibnfsyndrome,votesyndrome presence_type;
size : NATURAL;

END RECORD;

The final constant declarations are used to assign default values to the previously

defined composite types. This is syntactically necessary if a port of mode in needs to remain

open.

CONSTANT def class : classtype :- (FALSE, 0,0);
CONSTANT def~presence: presencetype : (FALSE,FALSE,FALSE,FALSE,FALSE);
CONSTANT def members : members type : (0,0,0,0);
CONSTANT def-serp : serptype := (FALSE,FALSE,0,defclass);
CONSTANT defct ct_type := (0,zero,def_presence,defmembers,0);
CONSTANT def-msg msgtype := (0,0,defclass,0 nsdef_presence,

def_resence,defpresence, 0);

7.2.1.2. Address Package

The addresspackage contains the items necessary to implement a resolved address

type for use in memory addressing. The scoreboard model contains many small memories,

some of which need to be addressed by more than one entity. This creates a need for a

common resolved type for use in addressing. A lngic type could not be used since this would

make the behavioral model less clear. It was desired to use a subtype of integer for

addressing yet retain the ability to have multiple drivers. Addresspackage is the result.

The key to resolving an integer type is to define a high impedance value and write a

resolution function which ignores all drivers with this value, just like a logic resolution

function ignores drivers with high-impedance values. If an address has more than one

driver with non-high-impedance values, then the resolution function should return a high-

70

impedance address. Address-type is defined as ranging from -1 to integerright and the

high.z.address is defined as -1. An array of addresses is also declared for use as input to the

resolution function.

SUBTYPE addresstype IS INTEGER RANGE -1 TO INTEGER'RIGHT;

CONSTANT high_zaddress : addresstype : -1;

TYPE addressarray IS ARRAY (NATURAL RANGE <>) OF addresstype;

The resolution function takes an array of addresses as input and returns the one

non-high_z_address value. If more than one driver is not equal to -1, an error condition is

asserted. Finally, the resolved address type is declared.

FUNCTION resolve _address (addresses: IN addressarray)
RETURN addresstype IS

VARIABLE result addresstype;
VARIABLE temp i : INTEGER;
VARIABLE found_one,more_than one : BOOLEAN := FALSE;

BEGIN
result :- highz_address;

-- If no inputs then default to highz_address
IF (addressesLENGTH = 0) THEN

RETURN result;
ELSIF (addresses'LENGTH = 1) THEN

RETURN addresses(addresses'LOW);
-- Calculate value based on inputs
ELSE

-- Iterate through all inputs
FOR i IN addresses'RANGE LOOP

IF (addresses(i) = high z address) THEN
NEXT;

ELSIF NOT found one THEN
result := addresses(i);
found-one := TRUE;

ELSE
more than one := TRUE;

END IF;
END LOOP;
IF more than one THEN

result : --high_z address;
ASSERT FALSE
REPORT "Address line has more than one driver"
SEVERITY ERROR;
END IF;

-- Return the resultant value
RETURN result;

END IF;
END;

SUBTYPE resolved-address IS resolveaddress addresstype;

71

7.2.1.3. Voter Package

The voter package contains subprograms for converting the types used in the SERP to

and from bits and bit_vectors and subprograms for performing rudimentary voting It is

important to note that this initial model does not perform majority voting; instead, it merely

chooses the last parameter passed to it. This is not a major flaw since the current test vector

generator does not generate faults. Instead, all SERP entries within a VID are the same A

structural voter currently being designed performs bitwise majority voting.

This package also defines types for use in the internal timer. The constant

timer~resolution specifies the number of bits of resolution in the internal timer. Subtype

timer-range is used to constrain the possible values of the timer. Init_timervalue is the

value the timer assumes immediately after rollover, while max_timervalue is the rollover

value. Timertype represents a single entry in the internal timeout memory. Each entry has

a flag to signal whether a timeout has been set and a variable to hold the value of the timeout.

The declarations are given below.

CONSTANT timer resolution : INTEGER := 16;
SUBTYPE timerrange IS INTEGER RANGE 0 TO (2**timer resolution - 1);
CONSTANT init timer value timer-range;
CONSTANT max timer value timer range;

TYPE timer_type IS RECORD
timeout set : POOLEAN;
value :-timer range;

END RECORD;

TYPE timeout memorytype IS ARRAY(INTEGER RANGE <>) OF timertype;

7.2.1.4. OtherPackages

The behavioral model contains five more packages. The testbench package contains

functions to read and write test vector files generated by a C program (see section 7.5.1 for

further details). The file format is simple and can be gleaned from the C source code in

Appendix 10.8.

The main control package contains two important enumerated type declarations.

The first one, shown below, is used by the testbench to control the scoreboard. The unknown

operation is included as an error check. A concurrent assertion statement warns the user if

an unknown state is ever reached. The other operations will be explained in section 7.3.

TYPE operation_type IS (unknown,idle,reset_state,update_ct,
clear timeouts,process newserp, continue);

72

The second declaration is used by the scoreboard to inform the testbench what operation it is

performing and when it has completed a given operation.

TYPE return_operation type IS (unknown, idle,busy, resetcomplete,
ct update complete,clear_complete,

mssage_to_send, processing_complete);

The voted SERP package encapsulates types used by the entities which deal with the

voted SERP memory. Each voted SERP entry is a record with the fields shown. The

vid-issimpleA flag is used to flag illegal simplex messages since the redundancy level is

not included in a voted SERP entry. Illegal message checking is performed by a subprogram

also located in the voted serp package.

TYPE votedserp type IS RECORD
obne,ibnf : flowcontroltype;
vid is simplex : BOOLEAN;
source vid,dest vid : vidtype;
class - class type;
obnesyndrome,ibnfsyndrome,sb votesyndrome : presencetype;

END RECORD;

The PID to VID package contains types used by the two internal translation tables.

The first table allows the scoreboard to read SERP entries in VID order (they are in PID order

inside the dual port RAM) and the second table allows the sender to cycle through the voted

SERP memory efficiently (see section 7.2.2.1 for a more in depth explanation). Each PID to

VID table entry is essentially the same as a CT entry. In an actual scoreboard, the members

in the CT would be [NE,PE) encodings while each member in the PID-to-VID translation

table would be the address of the PID's SERP entries.

TYPE pid to vid entrytype IS RECORD
vid : vid type;
redunlevel : redunlevel type;
presence presencetype;
members members type; -- these are really addresses
timeout timeout type;

END RECORD;

The vids-in-system translation table does not require a composite type. Instead, each entry is

merely an address into the voted SERP memory.

The final package in the model is the dual port ram package. It contains three array

declarations, one each to hold the CT, the SERP, and the message queue.

73

7.2.2. Entities

This section provides an overview of the entities in the behavioral model. It gives the

reader an insight into the structure of the scoreboard and how the entities are organized. Note

that all the entities in the design are synchronous, meaning that all processes are sensitive to

the clock and have the following basic form2 3 :

example : PROCESS (clock)
BEGIN

IF clock = fl AND clock'EVENT THENI
body of process

END IF;
END PROCESS;

The advantages of a fully synchronous design were discussed in section 5.2. Additionally,

all state machines within the design have the following basic form (this form is a

simplification of the CASE variation of Figure 5-5):

state machine : PROCESS (clock,activating signal)
TYPE state-type IS (sO,sl,s2);

BEGIN
IF clock = fl AND clock'EVENT THEN

CASE statesignal IS
WHEN sO =>

IF activating-signal = active THEN
state-signal <= sl;

ELSE

default assignments

END IF;

WHEN sl =>

etc.
END CASE;

END IF;
END PROCESS;

The state machine remains in the initial state until the activating signal is brought to an

active value. Otherwise, default assignments, which usually assign high-impedance values

to shared signals, occur.

23 This chapter uses the Vantage 46 state logic system for all control-like signals. All that really needs to
be known is that TI' and ' are equivalent to ' and '0', respectively.

74

Memory accesses within the model are assumed to take two clock cycles from the

time the address is asserted to data valid. This results from the synchronous nature of the

basic memory model, which is given below:

ENTITY example-memory IS
GENERIC

readdelay: TIME := 10 ns

PORT

memoryoutput : OUT memory entrytype;
memoryinput: IN memoryenry_type;
read write: IN t wlogic;
address: IN resolved address;
clock: IN twlogic

END example-memory;

ARCHITECTURE example memory OF example memory IS
TYPE memory_type IS ARRAY(natural RANGE <>) OF memoryentrytype;

BEGIN
memory behavior : PROCESS (clock)

VARIABLE memory : memory type (mem base TO memtop);
BEGIN

IF clock = fl AND clock'EVENT THEN
IF read write = fO THEN

memory(address) := memoryinput;
ELSE

memory output <= memory(address) AFTER read-delay;
END IF;

END IF;
END PROCESS;

END examplememory;

All memories are built on the basic process model discussed previously. They

generally have one port as an input into the memory and one port for the output (some

memories are dual-ported). This has to be done to avoid writing resolution functions for

inout ports2 4 . The memory itself is simply an array whose index is the memory address.

The generic readdelay is used to introduce an assignment delay. The purpose of this was

discussed in section 5.3.

The entity declaration for the entire scoreboard is contained below. Operationin is

used by the NE to control the scoreboard, while operationout is used by the scoreboard to tell

the NE what it's doing. The higher life form (HLF) signal indicates whether a fault-

24 While many types can be resolved (like logic types), resolving a composite type doesn't make much
sense. Since abstract behavioral models incorporate many such types, memories must have explicit
in and out ports.

75

masking group is present in the system. Messageto.send tells the NE that a message is

waiting to be sent. Sbaddress and read_write are used to extract CT and SERP entries and

write message entries. The data for these entries appears on the signals ct-data, serp-data,

and msg.data, respectively. The system-wide clock, generated by the testbench, appears on

the clock signal and is distributed to all entities with clock signals.

ENTITY scoreboard IS
PORT

operation in: IN operation type;
operationout: OUT return_operation-type;
hif: IN BOOLEAN;
message tosend: OUT BOOLEAN;
sb address: OUT resolved address
read write: OUT t wlogic;
ct data: IN ct type;
serpdata: IN serptype;
msgdata: OUT msgtype;
clock: IN t-wlogic;

END scoreboard;

7.2.2.1. Dual Port RAM

The dual port RAM entity holds the CT and SERP. Message information is written

into it by the sender. The dual port RAM and the scoreboard represent the top level

architecture, which the testbench instantiates and tests.

Below is the entity declaration for the dual -port RAM. AddressO, RWO (read/write),

Act.in, Aserp_in, and Amsg-out control the NE side of the RAM. Addressl, RW1, Bctout,

Bserp-out, and Bmsg_in control the scoreboard side of the RAM. The modes of the data ports

represent the needs of the system. In other words, the unused ports, such as an Amsg.in, have

been removed.

ENTITY dpram IS
GENERIC

read-delay: TIME := 10 ns

PORT

address0: IN address-type;
RWO: IN twlogic
Act in: IN ct-type;
Aserp_in: IN serptype;
Amsgout: OUT msgtype;
addressl: IN address-type;
RW1: IN t_wlogic;
Bct out: OUT cttype;
Bserp out: OUT serp type;
Bmsg_Tn: IN msgtype :- def msg;
clock: IN t-wlogic;

76

END dpram;

7.2.2.2. Voted SERP

The voted SERP memory is organized as 256 25 locations of one entry apiece. Any

given VID's entry can be found by using its VID number as an address. Since even the

largest system will only contain a maximum of 40 VIDs, the voted SERP memory will be

sparsely populated. Memory is traded for speed in this case, since storing voted SERP entries

in a packed format would require a table-lookup or a content-addressable memory.

The voted SERP memory entity declaration is shown below. It is a dual ported

memory, except that porti has no input port. Port0_in is used by the voting and timeout

hardware to write voted SERP entries, while portlout is used by the sender to read voted

SERP entries. Port0_out is presently unused.

ENTITY voted serprnemory IS
GENERIC

readdelay: TIME :1 10 ns

PORT

portlrw: IN t wlogic := fl;
portO-rw: IN twlogic;
clock: IN t wlogic;
portlout: OUT voted_serp type;
portl address: IN resolved address;
portOaddress: IN address-type;
portOout: OUT voted_serp type;
portOin: IN votedserp type

END voted serpmemory;

7.2.2.3. Pid-to-vid Table

The scoreboard uses two internal tables to assist it in processing the SERP. The pid-

to-vid table allows the scoreboard to read the SERP in VID order. This is important since that

is how SERP entries must be voted. Each table entry contains the source VID, redundancy

level, presence bits, and timeout value. The members array contains the dual port RAM

addresses of each of the VID members SERP entries. The pid-to-vid table and the vids-in-

system table (discussed in the next section) are regenerated when the scoreboard is reset and

whenever a CT update is performed.

25 This number is dependent on the maximum VII) number.

77

16L-

The pid-to-vid entity declaration is given below. It precisely follows the standard

memory model.

ENTITY pid to vid IS
GENERIC

read-delay: TIME :- 10 ns

PORT

ptov out: OUT pid to vid entry-type;
ptov-in: IN pid to vid_entry_type;
read write: IN t wlogic := fl;
address: IN resolved address
clock: IN t_wlogic;

END pid-to vid;

7.2.2.4. Vids-in-system Table

The vid.-in-system table allows the sender to cycle through the voted SERP memory

efficiently by making a continuous traversal through the SERP. The vids-in-system table

contains the addresses in the voted SERP memory of all the active VIDs in the system.

The entity declaration for the vids-in-system table is given below. It also precisely

follows the standard memory model.

ENTITY vids in system IS
GENERIC

read-delay: TIME := 10 ns

PORT

da~a out: OUT address type;
data in: IN address-type;
re d-write: IN t wlogic;
aoiress: IN resolved address;
cl.-ck: IN t-wlogic

DI vids_in. system;

7.2.2.5. Voting and Timeout ubsection

The voting and timeout subsystem performs the voting and timeout functions of

SERP processing and writes the voted SERP entries into the voted SERP memory. It is

organized as three processes. One process reads a VID's SERP entries, triggers the voter, and

writes the voted result into the voted SERP memory. A second process performs the voting

and timeout checking, and a third implements the scoreboard's internal timer. The first two

78

processes are state machines of the form discussed in section 7.2.2. The voting is done via a

subprogram call. Section 7.2.1.3 discussed how the behavioral model performs voting.

The entity declaration for the voting and timeout hardware is shown below.

Start_voting signals the voting and timeout hardware to begin voting the SERP. It asserts

donevoting when SERP voting is complete. Numyvids is an integer which represents the

number of vids in the system. The voting and timeout hardware uses this value to tell when

all VIDS have been voted. Startclear tells the voting and timeout hardware to start clearing

timeouts. When timeouts are cleared, it signals clear..done. Ptov..address, ptovjrw (rw

stands for read/write), and ptovdata are used to read entries from the pid-to-vid table.

Dpramaddress, dpramrw, and serp-data are used to read SERP entries from the dual-port

RAM. Votedserpaddress, voted-serp rw, and votedserp-data are used to write entries
into the voted SERP memory. The clock is the system clock from the top-level entity.

ENTITY vote timeout IS
PORT

start-voting: IN BOOLEAN;
donevoting: OUT BOOLEAN;
num vids: IN INTEGER;
start-clear: IN BOOLEAN;
clear-done: OUT BOOLEAN;
ptov address: OUT resolvedaddress := high_z_address;
ptov rw: OUT t_wlogic;
ptovdata: IN pid to vid entrytype;
dpramaddress: OUT resolvedaddress :- high_z-address;
dpramrw: OUT t-wlogic;
serpdata: IN serptype;
voted serpaddress: OUT addresstype;
voted serprw: OUT twlogic;
voted serp data: OUT voted_serptype;
clock: IN twlogic

END vote timeout;

7.2.2.6. Sender

The sender entity cycles through the voted SERP memory using the vids-in-system

table to check for valid messages. If the OBNE bit in a voted SERP entry is set, the potential

message is checked for validity. If the message is valid, the sender reads the voted SERP

entry corresponding to the destination VID. If the destinatio.i VID's IBNF bit is set, the

message is enqueued. The sender has a priority pointer which is incremented after each

SERP cycle so that it begins looking for valid messages one vids-in-system table entry later.

In the initial model, the timestamp field of a message is generated from a signal internal to

the sender instead of from the timer used for timeouts.

79

The entity declaration for the sender is shown below. Startprocessing tells the

sender to begin looking for valid messages. When the sender is completely finished

processing the current SERP, it signals done. Message-to-send is asserted by the sender

after it has found a valid message and written the message record into the dual-port RAM.

The NE asserts continue after it has sent the message. The hif signal affects valid messages

as discussed in section 6.4.2.2. The ct.update signal tells the sender to reset its priority

pointer to the beginning of the vids-in-system table. Num_vids is used by the sender to tell

when all voted SERP entries have been checked for messages. Pass..through feeds a tri-state

buffer which lets either the sender or the output from the vids-in-system table serve as the

address into the voted SERP memory. The output from the vids-in-system table is used when

OBNE bits are being checked, while the sender asserts the destination VID address after a set

OBNE bit is encountered. Visaddress, visrw, and visdata are used to read entries from

the vids-in-system table. Votedserpaddress, vsjrw, and voted_serpdata are used to read

voted SERP entries. Dpram-address, dpram_rw, and msgdata are used to write message

records into the dual port RAM.

ENTITY sender IS
PORT

startprocessing: IN BOOLEAN;
done: OUT BOOLEAN;
message to send: OUT BOOLEAN;
continue: IN BOOLEAN;
hif: IN BOOLEAN;
ct_update: IN BOOLEAN;
num vids: IN INTEGER;
passthrough: OUT BOOLEAN;
vis address: OUT resolved-address;
visrw: OUT t_wlogic;
vis--data: IN address type;
voted serp_address: OUT address-type;
vs rw: OUT t wlogic;
voted serpdata: IN votedserp type;
dpram-address: OUT resolved-address;
dpram_ rw: OUT t_wlogic;
msg_data: OUT msg-type;
clock: IN t-wlogic

END sender;

7.2.2.7. Main Controller

The main controller receives commands from the NE and asserts internal control

signals to perform the correct actions in the proper order. The main controller is also

responsible for informing the NE when requested actions have been completed. The valid

commands were listed in section 7.2.1.4. The main controller also regenerates the pid-to-vid

80

and vids-in-system lookup tables during reset and CT update operations. The controller is

composed of three process statements, one for processing commands, one to handle SERP

processing, and one to generate the translation tables.

The grisly entity declaration for the main controller is shown below. Operation in is

used by the testbench to control the operation of the scoreboard, while operationout is used by

the scoreboard to inform the NE of what it is doing (see section 7.2.1.4 for the type

declarations). Messagetosend is asserted by the sender when it has found a message. The

main_controller asserts continue-processing after it receives a continue operation from the

NE. Start.voting is used to start the voting and timeout hardware, which asserts donevoting

when voting has been completed. Startsender is then asserted to start the sender looking for

messages. The sender asserts sender-done when it has completed message searching

operations. The main controller asserts start_clear when it receives a cleartimeouts

message. The voting and timeout hardware asserts cleardone when the clear has been

completed. Ct.update is asserted by the main controller in response to a update-ct message.

This signal tells the sender to reset its internal priority pointer. The numvids signal tells

the rest of the scoreboard how many active VIDs are in the CT. The remaining signals are

used only when the vids-in-system and pid-to-vid tables need regeneration.

Dpramaddress, dpramrw, and ct data_in are used to read CT entries from the dual port

RAM. Ptov..address, ptov_rw, and ptov..data are used to write pid-to-vid entries into the pid-

to-vid table while vis_address,visrw, and visdata are used to write vids-in-system entries

into the vids-in-system table.

ENTITY maincontroller IS
PORT

operation in: IN operationtype;
operationout: OUT return operation type;
messagetosend: IN BOOLEAN;
continueprocessing: OUT BOOLEAN;
startvoting: OUT BOOLEAN;
done_voting: IN BOOLEAN;
start sender: OUT BOOLEAN;
sender-done: IN BOOLEAN;
start clear: OUT BOOLEAN;
clear-done: IN BOOLEAN;
ct_update: OUT BOOLEAN;
num vids: OUT INTEGER;
dprainaddress: OUT resolvedaddress : high_z-address;
dpramrw: OUT t-wlogic
ct data in: IN cttype;
ptov_address: OUT resolvedaddress :-highz_address;
ptov__rw: OUT t wlogic;
ptovdata: OUT pid to vid entrytype;
vis address: OUT resolved address;
vis data: OUT addresstype;
vis rw: OUT t wlogic;

81

clock: IN t-wlogic;

END maincontroller;

7.2.2.8. Address-buffer

The address buffer entity is essentially a tri-state buffer for tri-stating addresses. It

is used by the sender to tri-state the output from the vids-in-system table so that it can assert

the address into the voted SERP memory. It assigns the output to the input when pass-through

is True and assigns high_z.address to the output when passthrough is False.

ENTITY address-buffer IS
PORT

pass through: IN BOOLEAN;
clock: IN t-wlogic;
output: OUT resolved-address;
input: IN resolved-address

END addressbuffer;

ARCHITECTURE address buffer behavior OF address-buffer IS
BEGIN

output <- input WREN passthrough ELSE
high_z-address;

END addressbufferbehavior;

7.3. Functional Description

Following is the functional description of the behavioral model. The effects of each

major operation are explained in sequence, beginning with reset and ending with
processnewSERP. The order roughly corresponds to the events surrounding power-up to

processing of the first SERP.

7.3.1. Reset

Before the scoreboard can perform any other action it must be reset. The reset causes

two separate actions to occur : update_CT and clear_timeouts. When both actions are
completed, the main controller signals resetcomplete. Until then, it signals busy.

7.3.2. ClearTimeouts

The cleartimeouts operation deletes all pending timeouts. A process within the
voting and timeout architecture cycles through the timeout memories, setting the timeoutset

field of each timeout entry to FALSE. Note that this function is not implemented in the initial

behavioral model.

82

.

VU. UpdatejCT

The updateCT operation causes two separate initializations to occur. First, a process

within the main controller cycles through the CT looking for valid VIDs. When a VID with a

non-zero redundancy level is found, its CT entry is converted into a pid-to-vid table entry

and the VID number is added to the vids-in-system table. In the behavioral model, this

conversion means the CT entry is copied into the pid-to-vid table. In the structural models,

the (NE,PE) pairs within the CT entry will be converted to addresses into the SERP memory.

The second intitialization simply performs a cleartimeouts operation.

7.3.4. ProcessnewSERP

When the main controller receives a process new.serp operation, it activates a

process which handles all the necessary actions for SERP processing. The first action of this

process is to activate the voting and timeout hardware which then votes the SERP. When the

entire SERP has been voted and the result stored in the voted SERP memory, the sender is

signalled to begin scanning for valid messages. When a message is found, the sender

signals the SERP-processing process, which handles the message sending protocol. The

message queue is not implemented in the initial model. Instead. the scoreboard idles until

the NE sends a continue operation. When the sender has scanned the entire voted SERP, it

signals the controlling process which in turn informs the NE that processing is complete.

The following paragraphs provide more detail.

When the voting and timeout hardware is signaled to do so, it reads SERP entries,

votes them, checks timeouts if necessary, and writes the result into the voted SERP memory.

First, the addresses in a pid-to-vid translation table entry are used to read out the

corresponding SERP entries. When all the SERP entries have been read, they are passed to a

process which handles the voting and timeout checking. The voting is done by a subprogram

which converts the SERP entries to bits, votes them, and converts them back to their original

types. After timeouts are checked, the voted SERP entry is assembled and written to the voted

SERP memory using the source VID as the address.

Once voting is completed, the sender is activated. The sender asserts an address into

the vids-in-system table, each entry of which is an address into the voted SERP memory.

When the resulting voted SERP entry appears on the data lines, the sender latches it and

checks the OBNE bit. If the OBNE bit is not set, the next address in the vids-in-system table is

asserted. If the OBNE bit is set, the potential message is checked for validity according to the

83

rules presented in section 6.4.2.2. The behavioral model does not flag invalid messages.

The sender then asserts the destination VID as an address into the voted SERP memory. If

the destination VID's IBNF bit is not set, the next address in the vids-in-system table entry is

asserted. If it is set, the sender assembles a message record and informs the SERP

processing controller that a message needs to be sent. The sender repeats this cycle until all

the voted SERP entries have been processed.

7.4. Performamie

The model estimates the following performance figures using a 25 MHz (40 ns)

clock:

Operation Time (gts)
reset 31.6

CT update 31.6
processnewSERP to first message 14.5

process SERP and send all messages 19.7
-Half of the VUIs source a message

7.5. Verification and Testing

The informal verification of the model involved two basic steps. The first was to

write a test vector 2 6 generator in C based on the functional description of the scoreboard. The

second was to write a VHDL testbench to read in these vectors from an external file, apply

them to the behavioral model, and check the resulting outputs for validity. The following two

sections discuss the algorithm used by the C program to generate test vectors and the testbench

which reads and applies them.

7.5.1. C Program

Test vector generation begins by generating a CT. This is done by randomly

generating a redundancy level (either 1,3 or 4) and attempting to fill it by cycling through the
NE's and assigning a free PE from each until the VID is filled. If not enough free PEs are

available to fill a VID, a new redundancy level is generated and the process repeats.

Successful population of a VID allows the program to enter it in the CT2 7 .

26 Scoreboard test vectors consist of a CT and a number of SERPs generated from that CT.

27 The presence bits are fabricated and a VID number and timeout value are randomly generated first.

84

After all PEs have been assigned to a VID, the program begins to randomly generate

messages. A source VID is chosen from a pool of free source VIDs and a destination VID is

randomly generated (the destination VID number must correspond to a valid VID). Once the

source and destination are selected the SERP entries are produced. The IBNF bits of the

destination VID's members and the OBNE bits of the source VID's members are asserted.

The exchange class and destination VID fields are also written. In the current version of the

program (version 2.2), the exchange class is fixed and no user byte is written. The program

produces messages until all VIDs have been used as sources.

The program writes each CT and SERP to an external file. All output is printable

ASCII and entirely numeric. This ensures that the VHDL testhench has no problems reading

and interpreting the file using the TEXTIO package.

7.5.2. Testbench

The scoreboard testbench simply instantiates the top level entity, which in the initial

model encompasses both the scoreboard and the dual.port RAM, and feeds the model CTs and

SERPs. The testbench first reads a CT from the test vector file, writes it into the dual-port

RAM, and then tells the scoreboard to reset. After the reset is complete, the testbench reads the

first SERP from the fie, writes it into the dual-port RAM, and tells the scoreboard to process

it. Each message the scoreboard sends is acknowledged by the testbench but currently only

manual checks on message correctness are performed. When the scoreboard signals that

SERP processing is complete, the testbench reads the next SERP from the file, writes it into

the dual-port RAM, and tells the scoreboard to process it. This cycle is repeated as often as

desired. The testhench is also responsible for generating the system-wide clock.

7.6. limitations

The purpose of this section is to make explicit all the deficiencies of the VHDL model

of the scoreboard. Many of these deficiencies were designed to limit complexity or resulted

from changes in the algorithm. There was insufficient time to solve them.

The C program needs rewriting to implement faults. This is the most serious

limitation, for without the ability to generate faults or turn on OBNE bits over

multiple SERP cycles, for example, much of the scoreboard is untested (i.e. the

voter and the timeout mechanism).

85

The main controller is really gross and kludgy since it was written

incremertally. Most of its code is unnecessary, a fact discovered only after it was

written.

c: Timeout expiration is calculated incorrectly.

* The message sending protocol presented in the algorithm is not implemented.

Instead, the scoreboard waits after each message for clearance to continue.

* IBNF bits are not cleared after sending a message. Thus, a VID could receive

more than one message in a cycle.

* Invalid destination VIDs are not flagged.

* The model does not support a load timer operation.

* Full message validity checking is not implemented.

* The structural voter has not been tested.

* The testbench needs to perform complete message checking.

86

8. Discussions on Implementation

This chapter discusses a number of scoreboard implementation possibilities, shown

in tree form id Figure 8-1. The conclusion of this chapter is that, in order to ensure a working

implementation which meets throughput goals, an ASIC must be built, preferably using

VHDL synthesis. If for some reason (such as cost) an ASIC cannot be constructed, the next

best implementation would be to use a CPU. The sections following explain the advantages

and disadvantages of each possibility in detail.

Synthis Gate-Level Design

CPU FPGA ASIC

CPU , FPGA

Figure 8-1, Implementation Tree

8.1. General Purpose Microprocessor

The simplest and most cost-efficient method for implementing the scoreboard is with

a general purpose microprocessor. Since speed is the main goal, the preferred processor

would be a RISC model, such as a SPARC or Motorola 88000. Figure 8-2 below shows the basic

block diagram of such a design. It would consist of the proces-or, some dedicated memory,

an external timer for timeouts2 8 , glue logic,and a dual-port RAM for communication

between it and the rest of the NE. The dual-port RAM would hold the SERP, CT, and the

28 Though certain RISC processors (like the AMD 29000) have built-in timers, they could not be used
because the timers in each score'soard instance must be kept synchronized.

87

messages the scoreboard finds, while the private memory would hold any lookup tables used

to speed SERP processing.

glue logic

(cPIJ) NE

... dual-port RAM

Figure 8-2, RISC scoreboard

The chief advantage to a RISC design is ease of design. Designing such a scoreboard

would be simple since the only tricky part would be the glue logic, whose function it would be

to interface to the NE's controller. The rest of the design is a simple matter of wiring pins

together. The software design would be more complex, but still not too difficult since the

scoreboard algorithm is easily expressed in C 29. Example code for such a design can be

found in Appendix 10.3. Because of its simplicity, a RISC scoreboard design is also easily

changed.

The advantages of this design are compelling, so much so that it would be difficult to

justify any other implementation save for two crippling disadvantages - performance and

area. A feel for the performance can be obtained by examining some example scoreboard C

code. The code whi l gets executed most often is the voting code, shown in Figure 8-3. Using

fully optimized assembly language, 62 instructions are required to vote the OBNE bits of a

triplex. Assuming an all triplex configuration (13 VIDS), 806 instructions would be executed

to reach the conclusion that the SERP contains no messages. Using a 25 MHz processor (40

29 For a deliverable system, hand optimized assembly language would yield the best performance.

88

ns/instruction), this minimum case will require 32.2 gts to complete. When the overhead of
performing timeouts and voting the rest of the SERP information is added, the scoreboard

will be too slow to support real-time tasks with iteration rates of 100 Hertz.

/* vote is a generic vote function which will vote up to 4

/* items passed to it.

*/

int vote (a,b,c,dredunlevel,is flow control,unan)
int a,bc,d,is_flow_control,redunlevel,*unan;

int result;

switch (redurlevel)
f
case 4:

*unar. = ((a = b) && (b == c) && (c == d)) ? TRUE : FALSE;
if (is flow control)

result = (a&b&c) I (a&c&d) 1 (b&c&d) I (a&b&d);
else

result = (a&b) I (b&c) I (cfd) j (a&c) I (a&d) I (b&d);
break;

case 3:
*unan = ((a -- b) && (b- c)) ? TRUE : FALSE;
resuli = (a 6 b)I (b & c) I (a & c);
break;

case 1:

'unah = TRUE;
resu t = a;

break;
others:

break;

return (result);

1' end vote /

Figure 8-3, C Voting Code

The second disadvantage of a RISC scoreboard is area. RISC chips alone are very

large (approximately 200 pins is typical). The addition of support chips would cause the

design to consume a large percentagp of available board area.Thus, even though a RISC

scoreboard is attractive from a design standpoint, it is unable to meet the design goals of C3.

8.2. FPGA

A second alternative for implementing the scoreboard is with Field Programmable

Gate Arrays (FPGA). FPGAs have the advantages of relatively high-density, low cost, and

reprogrammability. Most of them also have good design systems. Furthermore, an FPGA

89

implementation would probably be able to meet performance goals. An FPGA

implementation has three major disadvantages, though.

First, the design task would be long and complex. A student at CSDL recently

completed two FPGA designs for his MS Thesis [Sak91], one of which was a voter. The voter

alone consumed an entire FPGA and could barely run at 12.5 MHz (a 25 MHz scoreboard is

the goal). The scoreboard must contain a voter along with an abundance of additional

hardware. Partitioning the design into multiple FPGAs would be a nightmare.

A second disadvantage is that the existing VHDL scoreboard models would be useless

for designing the FPGAs. Although some companies have promised VHDL support for their

FPGA design systems, such a capability is not currently available. With all the effort put

forth into VHDL modeling (and the concomitant advantages), it would be undesirable to

throw it all away.

The final disadvantage is verification. With VHDL, verification would proceed

concurrently with transformation of the design to the gate level. Each step would be verified

to ensure that the new model is correct and that design goals are being met. With an FPGA

implementation, however, verification of the design would be much more difficult because it

would be spread over multiple FPGAs. Verifying each FPGA would also be difficult because

it would only perform a subsection of the full algorithm 30 .

8.3. Combination

Another implementation strategy is to combine the CPU and FPGA. An FPGA could

perform the speed critical task of voting while the CPU could take care of everything else

including feeding the voter. This method would yield a fast enough design. However, it is

probable that the overhead of reading SERP entries, writing them to the voter, and reading the

result would incur the same overhead as software voting, since loads and stores are usually

multiple cycle instructions. A solution would be to add address generation hardware to the

voter so that it could read SERP entries on its own. If this is done, then why use a CPU at all?

30 It could be posslble to generate test-vectors for the FPGA with a VHDL model, but the VHDL model
would have to reflect the organization and gate.structure of the FPGAs. This would entail two
complete designs of the scoreboard, one in VHDL and one in FPGAx, thus making this solution
prohibitive.

90

Why not throw on the additional hardware to perform the rest of the scoreboard function? In

short, a full FPGA implementation would be preferable to this option.

8.4. ASIC

The final implementation strategy is to use an ASIC. An ASIC has the advantages of

speed, size, and verifiability but the disadvantage of high cost and high risk relative to the

other implementation strategies. Two different paths exist for creating an ASIC - VHDL

synthesis and gate level design. As previous sections have shown, using VHDL with

synthesis is the preferred path.

There is little question that the fastest implementation is an ASIC. A single chip

would also consume the least area of all the choices. Verifiability would also be the smoothest

since the VHDL testbench could be used for all the functional test vectors. Additionally, good

synthesis systems automatically insert additional hardware to aid final testing (i.e. scan-

path). The problem with the ASIC approach is cost and risk. However, an ASIC is the best

option for optimizing scoreboard performance.

As a sidenote, no matter which implementation method is chosen an emulator can be

used to allow development of the rest of the NE while the scoreboard is being designed. This

emulator would consist of a C (or similar) program running on a single-board computer.

The NE could be set up to temporarily write SERPs and CTs into memory on board the

emulator. The emulator would then process them and write messages back to the NE. To the

NE, the emulator would simply appear as a slow scoreboard.

91

9. Conclusions and Recommendaions

This thesis has discussed the advantages of using VHDL to design digital hardware.

It also discussed modeling issues and applied them to the specification and modeling of the

FTPP scoreboard. Finally, implementation options were discussed.

The main conclusion of this thesis is that VHDL, combined with the top-down design

methodology, is a viable and useful digital hardware design method. The use of VHDL

shortens the design cycle by facilitating the specification and verification of designs early
in their life. Furthermore, abstract behavioral modeling, though requiring the rewriting of

entity declarations, has been shown to be useful when little is known about implementation.

The discussion on implementation concluded that an ASIC scoreboard would yield the best

cost/performance, followed by a RISC-based scoreboard.

A great deal of work must be accomplished before a working scoreboard can be

constructed. The author took the first step by structuralizing the voting and timeout

hardware. As of this writing, though, it had not been tested. The same process of

structuralization must be performed for all the entities in the behavioral VHDL model. After

this has been accomplished, a VHDL synthesis tool could be used to produce a gate-level

netlist. The test vector generator also requires an extensive rewrite to accommodate fault

generation.

One implementation issue that was not discussed and should be further researched is

that of using content-addressable memory for the voted SERP. It has the capability to reduce
the memory demands of the scoreboard, both by reducing the size of the voted SERP memory

and by eliminating the need for the vids-in-system table.

10. Appendices

10.1. Glossary of Terms

CHDL- Computer Hardware Description Language.

CSDL. Charles Stark Draper Laboratory

FUR - Fault Containment Region : A circuit incapable of propagating internal
har9 ware faults past its borders. This is achieved (usually) through physical and
electrical isolation.

FTPP - Fault Tolerant Parallel Processor : A prototype fault-tolerant computer
constructed to achieve high performance and high reliability for critical
computing applications. See Figure I for a diagram.

HLF - Higher Life Form bit. This bit, used internally by the scoreboard when
processing messages, indicates that at least one triplex or quad exists in the
system.

LEHP - Local Exchange Request Pattern : A data structure generated by each NE which
contains message data for each PE in that NE. Specifically, the LERP contains
whether the PE has a message to send and to whom and if the PE is able to receive
a packet.

LRM - Language Reference Manual. This refers to the standard IEEE document on the
VHDL language.

NE - Network Element : The part of the FTPP responsible for sending and receiving
packets on behalf of the PE's.

NEFTP - Nrtwork Element Fault Tolerant Processor. A minimum Byzantine Resilient
computer system used to demonstrate the utility of high-speed, fiber-optic data
links.

Packet - The 64 byte block of data exchanged by-the NE. Each inter-PE message is
packetized by the NE before it is sent.

FE- Processing Element: The part of the FTPP which performs the computations.
Usually a single-board computer.

SEP- System Exchange Requ(st Pattern : A data structure composed of the
concatenation of the LERP from each FCR.

VHDL - VHSIC Hardware Description Language

VESIC - Very High Speed Integrated Circuit

95

10.2. S coeboard Algoitbm

This appendix contains the scoreboard algorithm flowchart. Shadowed boxes refer to

different pages.

Begin
Processing the

SERP

Vote the SERP

Look for Valid
Messages

End
Processing

96

Lt

Begin processing
SERP

PWI VIDs SERP
entries hum the

BERP

fa.. control 'mUOBNE bits

I

flow control vote
IBNF bits

data vote
destination VID

I

data vote

"Change class

I

data vote
user byte

I F
Save the VID's voted

values along with the
three syndromme m a

voted SERP entry

11 VIDs voted ? - 80

<
A

yto

I

done voting

97

IL

[Flow Control Vat,Function

voe the -ase
information

Commonuanm s
Mode no - majoity st? no u0imu

Timeouts gose
here<>>

yes yes

IF

generate a vote

syndrome

98ur

Flow cont-z'on
majority functio

CASE
redundancy level

is

aimplex triplex qa

OBNE: 1of 1 OBNE: 2of 3 OBNE: 3of 4
IRNF:0of I BNF: 2of 3 InW: 3of 4

return Timeout FunctionI

clear voted store value in D0TOD et for
OBNE/IBNF bit VIIDs timeout *errant VID?

yes

compare stored timer
value to current value
of timer using timeout

field in VID's CT
entry

yes

PE is faulty, so
ignore it

return

WD0

data voting
function

voted result equals
majority vote of

inputs

MAJORITY RULE
CASE

redundancy level
is

tiplex
imlex quad

I of 2 o3 2 a4

generate a vote
syndrome

retorn

101

Be&i 1Lkg

<
noa

no

pull bet ar.bodcs lerboacs

was Pentrypednbi

simnplex 7Tudtest

no yes

n 0 1 1

Begin

message in the yes wat orte qeut
queue ?cla

no

enqueue the
message

104

10A3 Sam Screbord Code

This appendix contains a C program which implements (most) of the scoreboard

algorithm. It is intended as an example of code for a RISC scoreboard.

/* Scoreboard simulation program
by
Dennis Morton
5 May 1991

embedded scoreboard implementation
"I

/* This header contains globals used by the simulation

#define TRUE 1
#define FALSE 0

#define NUMVIDS 256
#define MAXVIDSIN SYSTEM
#define PEPERNE 8
#define NUMNE 5
#define MAXREDUNLEVEL 4

#define OBNEMASK 0x80000000
#define IBNFMASK 0x40000000
#define DATA MASK 0xO0ffffff
#define DES:_VIDMASK OxOOffO000
#define CLASS MASK OxOOOffO0
#define BROADCASTMASK OxOO008000
#define USERBYTEMASK OxOOO00ff

#define UNANSYNDROME 0

typedef struct ct _entrytype

int vid;
int redun_ level;
int presence(NUMNEI;
int timeoutvalue;
int pids[MAX_REDUN_LEVEL];

typedef struct message type

Int obne syndrome, ibnf syndrome, datasyndrome;
int source vid,dest vid;
int timestamp;

struct ct entrytype ct(NUM VIDSI,ctentry;
struct ct entrytype translation tableIMAXVIDSINSYSTEM] ,translationentry;
struct messagetype message;

int serpfPE PERNE * NUM_NE];
int timeouts[NUMVIDS];
int num vids in system;

/ *****m**** **********mm* *mm*0

/* vote is a generic vote function which will vote up to 4
/* items passed to it. '/

int vote (ab,c,dredunlevelis_flow control,unan)
int a,bc,d,is_flowcontrol,redunlevel,*unan;

int result;

switch (redunlevel)
i
case 4:

*unan - ((a -- b) && (b -- c) && (c -- d)) ? TRUE : FALSE;

if (is_flowcontrol)
result - (a&b&c) I (a&c&d) j (b&c&d) I (a&b&d);

else
result - (a&b) I (b&c) I (c&d) I (a&c) I (a&d) I (b&d);

break;
case 3:

*unan - ((a -- b) && (b -- c)) ? TRUE : FALSE;
result - (a A b) I (b & c) I (a c);
break;

case 1:
*unan = TRUE;
result = a;
break;

others:
break;

return(result);

/* end vote */

/* checkto checks to see if the timeout value (tovalue) has been */
/* reached. If it has, then it returns a true value for to reached. */

int check to (vid,to value)
int vid,tovalue;

int to-reached = FALSE;
int timervalue,timeout-value;

timer value - read timerl);
timeout-value - timeoutslvid];
if (timeout value -- 0)

timeouts(vid] - timervalue; /* TO set? then set a timeout */
else if ((timervalue - timeoutvalue) > to value)

toreached - TRUE;
timeouts(vid] - 0;

return (to reached);

/* end check-to */

/* fcvote performs the flow control vote function (i.e. OBNE '/
/* and IBNF). */

int fc vote (vid,a,b,c,d, redun_level,to_value, syndrome)
int vid,a,b,c,d,redunlevel,to_value,*syndrome;

W6

Ant i,unan,result;

result - vote (ab,cd, redunlevel,TRUE,&unan);

if (unan)
*syndrome - UNAN_SYNDROME;

else

/' generate syndrome here */

if (!(unan) && (result !- 0)) /* check for timeouts '/
if (!(checkto (vid,to value)))
/* timeout has not expired '/

result - FALSE;
return (result);

/f end fcvote '/

/ t*..**..**************e**.tt***~w******************/

/' vote other is the function which votes the destination
/I VID and exchange class fields of the SERP. 'I

Ant votedata (ab,c,d,redun levelsyndrome)
int a,b,c,d,redunlevel,*syndrome;

Ant resultunan;

result = vote (a,b,cd,redunlevel,&unan);
if (unan)

*syndrome = UNANSYNDROME;

else

/* generate syndrome here /

return (result);

/* end vote-other /

/ t***** ****.*t***vote _serp ***************

/* vote serp votes the SERP using the translation table to read '1
/* entries out in VID order. It sends all messages it finds. */

void vote serp ()

Ant obneunan,ibnf unan;
Ant obnesyndrome. ibnf syndrome,data_syndrome;
Ant obne, ibnfdata, exclass,dest-vid,user byte;
Ant a,b,c,di;
static Ant broadcast pending - FALSE;

if (!(broadcast pending))
for i - 0; (Mi <- num-vids in system) 9& (!broadcastypending)); i++)

translation entry - translation table(i];
a - serp[translation entry.pids(0]] & OBNEMASK;
b - serp[translation entry.pids(l]] & OBNE_MASK;
c - serp(translationentry.pids[2]) & OBNE_MASK;
d - serp(translation entry.pids[3]] & OBNEMASK;
obne - tcvote(translation entry.vd,a,b,c,d,

107

translation-entry.redun-level.
translation-entry.timeout-value,&obne_syndrome);

if (obne)

a - serp~translation -entry. pids(f 10] DATA_-MASK;
b - serp~translation-entry.pids[] Il DATAMASK;
c - serpitranslation -entry.pids[2]] & DATA_-MASK;
d - serpitranslation-entry.pids[3]] & DATAMASK;

/* vote the exchange class, destination VID, and user byte *

data - vote-data (translation-entry.vid,a,b,c,d,
translation-entry.redun level, &datas2ydrome,;

/* if message is a broadcast, processing is complete *
if (data & BROADCAST_MASK)

broadcast_pending - TRUE;
else

dest-vid - data & DESTVIDMASK;

/* check ibnf bit of destination vid ~
ctentry = ct~dest -vid];
a -serp~ctentry.pids[Oll & IBNFMASK;
b = serpfct_entry.pids[l]J & IBNF_MASK;
c = serp[ctentry.pids[2]l & 1BNF_MASK;
d = serp~ctentry.pids[3]j & IBNF_-MASK;
ibnf - fc_vote(ct_entry.vid,a,b,c,d,ct_entry.redun-level,

ct_entry.timeout_value,&ibnf syndrome);
if (ibnf)

/* send a message '

message. obne syndrome = obne syndrome;
message. ibnf_syndrome = ibnf syndrome;
message. data_syndrome - data syndrome;
message. source_vid - t ran slat ion_ent ry. vid;
message. dest_vid =Ctentry.vid;

message. timestamnp =Oxff;

else

/* do broadcast stuff/

10.4. mne t vd

I recommend adhering to the following style guide when modifying the scoreboard

VHDL code in order to keep it uniform.

1. separate out the keywords by putting them in all capital letters.

2. use liberal indentation

3. follow this naming guide for constructs:

* entities :descriptive name

* architectures :entity..name_.(behavioral,rtl,structural)

* configuration :c(architecture..name)

" packages : (descriptive name)_.package

* types : (descriptive-.name)-type;

4. Model state machines using the method I describe in section 5.1.

109

10.5. PitfaUf toAvoid

The following is a list of pitfalls to avoid when using the Vantage Spreadsheet VHDL

tool.

. once you change the grid, keep it consistent (I use a 5 point grid). Otherwise,

signals will not connect to ports of entities created with a smaller grid if the port

falls between grid points in the instantiating architecture.

* do not make port names visible to avoid unsightly clutter.

0 when creating an entity, always draw the box larger then necessary since

resizing it later is a pain.

0 If a change is made to an component which is instantiated in an architecture, that

component must be re-instantiated for the update to be reflected in the

architecture. However, do not simply delete the old component, since any

dangling signals will have to be redrawn. Instead, add a second component

directly on top of the old component. Then, select them both and do an inform to

find out the new components name (It'll be something like COMP 000025). The

choose "unselect by name" and then delete. Do a screen update to see the new

component. Be sure to rename it if the old component had a special name.

no0

10.6. VHDL Behavioral Desription

This appendix contains the complete VHDL source code for the behavioral model of

the scoreboard. The files are in the same order as presented in section 7.2.

10.6.1. Screbo Packa

-- Scoreboard package declaration

-- This package contains data types and constants used throughout the
-- scoreboard entity. It is visible throughout the entire design
..

LIBRARY score;
USE score.addresspackage.ALL;
USE std.stdlogic.ALL;
USE std.std ttl.ALL;

-- Note that deferred constants cannot be used very often in this
-- section because their values are needed later on in the package
-- declaration

PACKAGE scoreboardpackage IS

-- define the clockperiod

CONSTANT clockperiod TIME;
CONSTANT controldelay TIME;

-- declare configuration type data (global in scope)

CONSTANT num ne : INTEGER :- 5;
CONSTANT pe_per_ne : INTEGER := 16;
CONSTANT max vid : INTEGER := 255;
CONSTANT max redun level : INTEGER := 4;

SUBTYPE peloctype IS INTEGER RANGE 0 TO (peperne * num_ne - 1);

-- starting locations in the dual port ram
CONSTANT dpramsize : INTEGER;
CONSTANT membase address_type;
CONSTANT serpbase addresstype;
CONSTANT ctbase address type;

CONSTANT msgbase address_type;

-- declare SERP related items

SUBTYPE flow_control type IS BOOLEAN;
SUBTYPE vid_type IS INTEGER RANGE 0 TO max_vid;
SUBTYPE broadcasttype IS BOOLEAN;
SUBTYPE packettype IS INTEGER RANGE 0 TO 3;
SUBTYPE exclasstype IS INTEGER RANGE 0 TO 7;

TYPE class type IS RECORD
broadcast : BOOLEAN;

packet : packettype;
ex_class : ex_classtype;

END RECORD;

111

-NOTICE that in this simulation no 'iser byte is included. I'm still
-debating whether to include it. The hooks will be there no matter
-- what, though.

TYPE serp_type IS RECORD
obne,ibnf flow_control type;
dest -vid vid -type;
class :class-type;

END RECORD;

-- declare configuration table related items

TYPE redun level type IS (zero, simplex, triplex, quad);
TYPE presence type IS ARRAY(O TO (num_ne OF% 0 BOOLEAN;
TYPE members_type IS ARRAY(O TO (max_redun_level - 1)) OF pe~loctype;
SUBTYPE timeout type IS INTEGER RANGE 0 TO 255;

TYPE ct type 1S RECORD
vid-number :vid -type;
redun-level :redun_level type;
presence presence type;
members members type;
timeout timeout type;

END RECORD;

-the msg data type is used to pass message data outside the scoreboard

TYPE msg type IS RECORD
source vid,dest_vid :vid type;
class class type;
timestamp :TIME;
obne_syndrome,ibnf syndrome,vote_syndrome :presence type;
size :NATURAL;

END RECORD;

-define default constants for all the types in case an IN port of
-these types wants to remain OPEN (won't work otherwise)

CONSTANT def-class :class type;
CONSTANT def presence presence_type;
CONSTANT def -members members type;
CONSTANT def-serp :serp type;
CONSTANT def_ct ct_type;
CONSTANT def_msg msg_type;

-- These next two functions are used to convert redun_level type to and
-- from an INTEGER

FUNCTION redun -to -mit (redun :IN redun_level type)
RETURN INTEGER;

FUNCTION int -to redun lint :IN INTEGER)
RETURN redun_level type;

END scoreboard package;

-- scoreboard_package body

D12

PACKAGE BODY scoreboardpackage IS

CONSTANT clock period TIME 40 ns;
CONSTANT control-delay TIME clock period/4;

-- starting locations in the dual port ram

CONSTANT dpramsize : INTEGER :- 300;
CONSTANT mem -base address type - -1;
CONSTANT serp base : addresstype :- 0;
CONSTANT ct base address-type dpram_size + 1;
CONSTANT msgbase addresstype 2*dpram_size + 1;

-- Give values to the default constants

CONSTANT defclass : classtype := (FALSE,0,0);
CONSTANT defpresence presence type :- (FALSEFALSE,FALSEFALSE, FALSE);
CONSTANT def-members members-type :- (0.0,0,0);
CONSTANT defserp : serptype := (FALSE,FALSE, 0,def class);
CONSTANT def_ct ct_type := (0,zero,def-pre ence,def-members,0);
CONSTANT defmsg msgtype := (0,0,defclass,O ns,def presence,

defpresence,defpresence, O);

-- Elaborate the two conversion functions

FUNCTION redun-to-int (redun IN redunlevel type)

RETURN INTEGER IS
BEGIN

CASE redun IS
WHEN zero ->

RETURN 0;

WHEN simplex =>
RETURN ";

WREN trip-ex =>

RETURN 3;

WREN quad ->

RETURN 4;
END CASE;

END;

FUNCTION int to redun (int IN INTEGER)
RETURN redun level type IS
BEGIN
CASE Int IS

WREN 0 ->
RETURN zero;

WREN I ->
RETURN simplex;

WREN 3 ->

RETURN triplex;

113

WE 4 -

RETURN quad;

WHEN OTHERS =>

ASSERT FALSE REPORT -Integer Does Not Convert to redun";
RZTURN zero;

END CASE;
END;

END scoreboard package;

114

106.2. Address Package

-- Address Package Declaration

-- This package contains data types and a resolution function for
-- memory addresses. This package is included in all memory entities
-- and those which access them.

LIBRARY score;
USE std.stdlogic.ALL;
USE std.stdttl.ALL;

PACKAGE address package IS

SUBTYPE addresstype IS INTEGER RANGE -1 TO INTEGER'RIGT;

-- Define a resolved address type. Somewhat kludgy, but it'll work.

CONSTANT high z address : address type;

TYPE addressarray IS ARRAY (NATURAL RANGE <>) OF address type;

FUNCTION resolveaddress (addresses: IN addressarray)
RETURN address type;

SUBTYPE resolved-address IS resolveaddress addresstype;

END addresspackage;

PACKAGE BODY addresspackage IS

-- Address_t. is resolved by checking for addresstype'RIGIT. This
-- value is a:.alogous to the 1Z' st te of tri-state logic. In other
-- words, a value of dpramsize*3 does not have an effect

CONSTANT high z address : address type :- -1;

FUNCTION resolve address (addresses: IN addressarray)
RETURN address type IS

VARIABLE result : address type;
VARIABLE empi : INTEGER;
VARIABLE ;cundone,more thanone : BOOLEAN :- FALSE;

BEGIN
result :- high_z address;

-- If no inputs then default to address'RIGHT
IF (addresses'LENGTH - 0) TEN

RETURN result;
ELSIF (addresses'LENGTH - 1) TREN

WIL

RETURN addresses(addresses'LOW);
-- Calculate value based on inputs
ELSE

-- Iterate through all inputs

FOR i IN addresses'LON TO addresses'lIGR LOOP
IF (addresses(i) - high_zaddress) TEN

NEXT;
ELSIF NOT found-one TEEN

result :- addresses(i);
found one :- TRUE;

ELSE

more-than one :- TRUE;
END IF;

END LOOP;
IF more than-one TEEN

result :- high_z_address;
ASSERT FALSE

-- REPORT "Address line has more than one driver"
-- SEVERITY ERROR;

END IF;

-- Return the resultant value

RETURN result;
END IF;

END;

END addresspackage;

116

10.6.3. VoterPackage

-- Voter Pacl'Age

-- This package contains subprograms to convert high level data types
-- to bit vectors so that they can be easily voted
_-- .-- -

LIDRARY score;
USE score. scoreboardpackage. ALL;
USE score.voted_ serppackage.ALL;
USE std.std_logic.ALL;
USE std.stdcmos.ALL;

PACKAGE voter package IS

-- Declare a type to hold an array of serp entries. This models the
-- registers at the input to the voter.

TYPE serparray IS ARRAY(NATURAL RANGE <>) OF serptype;
. .

-- Declare timeout memory related stuff

CONSTANT timer resolution : INTEGER := 16;
SUBTYPE timer range IS INTEGER RANGE 0 TO (2""timerresolution - 1);
TYPE timer .type IS RECORD

timeout_set : BOOLEAN;
value : timer range;

END RECORD;

TYPE timeout-memorytype IS ARRAY(INTEGER RANGE <>) O timertype;
CONSTANT init_timervalue timer range;
CONSTANT max timer value timerrange;

--..

-- Declare the states for the voter controller

TYPE votestate type IS (v,vl,v2,v3,v4,v5,v6,v7,v8,v9,vlO);
..

-- Procedure vote_vid : this procedure takes in the SERP values for a
-- given vid and performs all the voting necessary to produce a
-- voted serp entry.
-- NOTE these procedures must be changed for a maxredun_level of
-- less than 4!!

PROCEDURE votevid (SIGNAL voted_serpentry : INOUT votedserp type;
SIGNAL votevalues IN serparray;
SIGNAL currentvid IN vid_type;
SIGNAL presence : IN presence_type;
obne_unan,ibnf_unan : INOUT BOOLEAN);

--. ta.*****a*.*a*ttaaa**a****a**aaaatata***aaaaaata***aaatata****taata

-- Procedure vote_bits : this procedure simply votes a bit-vector and

117

-- returns both the result and a UNANIMOUS flag
..

PROCEDURE votebits (a,b,c,d : IN bit vector;
SIGNAL presence : IN presence_type;
syndrome : OUT presencetype;
unan : OUT BOOLEAN;
result : INOUT bitvector);

-- Procedure vote bit : this procedure votes one bit (used for OBNE
-- and IBNF) and returns a UNANIMOUS flag

PROCEDURE vote bit (a,b,c,d : IN bit;
SIGNAL presence : IN presence type;
syndrome : OUT presencetype;
unan : OUT BOOLEAN;
result : INOUT bit);

-- Below are the overloaded convert to bits procedures

FUNCTION convert to bits (a IN flow-control type)
RETURN bit;

FUNCTION convert to bits C a IN INTEGER)
RETURN bit-vector;

PROCEDURE convert to bits (a,b,c,d : IN flow_control_type;
ba,bb,bc,bd OUT bit);

PROCEDURE convert to bits (a,b,c,d : IN INTEGER;
ba,bb,bc,bd OUT bit_vector);

PROCEDURE convert to bits (a,b,c,d : IN classtype;
ba,bb,bc,bd OUT bit-vector);

-- Below are the overloaded convertback procedures which convert bits
-- back to abstract types

FUNCTION convert back (a : IN BIT)
RETURN BOOLEAN;

PROCEDURE convertback (flowcontrolbit : IN bit;
SIGNAL flowcontrol : OUT flowcontrol type);

PROCEDURE convert back (bits : IN bit_vector;
SIGNAL int OUT INTEGER);

PROCEDURE convert back (bits : IN bit-vector;
SIGNAL class OUT classtype);

TYPE powerof_2_array IS ARRAY (NATURAL RANGE <>) OF NATURAL;
CONSTANT power of_2 : powerof_2_array(O TO 7) :- (1,2,4,8,16,32,64,128);

END voter_package;

118

-Voter Package Body

-This is the body for the voter package

PACKAZE BODY voter package IS

CONSTANT init timer value timer range 0;
CONSTANT max timer value timer-range 2**timer-resolution - 1;

-- PROCEDOIZ BODY vote vid

PROCEDURZ vote -vid (SIGNAL voted serp_ entry :INOUT voted serp type;
SIGNAL vote-values IN serp array;
SIGNAL current -vid IN vid -type;
BIGNAL presence :IN presence_ type;
obne-unan~ibnt-unan :INOU? BOOLEAN)

is

-the b_ variables represent the SERP fields transformed into bits

VARIABLZ a,b,c,d :serp type;
VARIABLE ba,bb,bc,bd :bit; -- bit values of obne and ibnf
VARIABLE voted-obne,voted-ibnf :bit;

VARtIABLE bva,bvb~bvc,bvd :bit vector(7 DOWNTO 0);
VARIABLE voted-dvid,voted-class :bit-vector(7 DOlINTO 0);

VARIASLE dvidsynd-zoneclass syndroene,obne_syndrome,ibnf syndrome
:presence type;

VARIABLE dvidunan,class unan BOOL.EAN FALSE;

VARIABLE index :INTEGER :-0;

BRGIN
index :- vote values SLOW;
a vote values (index);
b vote-values (index + 1);
c vote values~index + 2);
d vote-values (index + 3);

-- Vote obne

convert-to-bits (a.obne,b.obne~c.obne,d.obne,ba,bc~bb,bd);
vote_bit (ba, bb, bc, bd, presence, obnesyndrome, obne_unan,

voted obne);
cnnvert-back (voted-obne,votedserpentry.obns);

-- Vote ibnf

convert-to-bits (a.ibnf,b.ibnf,c.ibnf,d.ibnf,ba.bc,bb,bd);
vote bit (ba~bb bc, bd, presence, ibnfsyndrome, ibnfunan,

voted ibnf);
convert-back(voted_ibnf,voted_serpentry.ibnf);

-- Vote destination VID

119

convert to bits (a.dest vid,b.destvid,c.destvid,d.destvid,
bva,bvb,bvc,bvd);

votebits (bva,bvb, bvc, bvd, presence, dvidsyndrome,dvidunan,
voteddvid);

convertback(voteddvid,voted serpentry.destvid);

-- Vote class

convert-to bits (a.class,b.class,c.class,d.class,
bva,bvb,bvcbvd);

votebits (bva,bvb,bvc,bvd,presence,classsyndrome,classunan,
votedclass);

convertback(votedclass,votedserpentry.class);

voted_serpentry.source_vid <- currentvid;

END;

-- PROCEDURE BODY vote bits

PROCEDURE votebits (a,b,c,d : IN bitvector;
SIGNAL presence : IN PRESENCEtype;
syndrome : OUT presence type;
unan : OUT BOOLEAN;
result . IOUT bitvector)

IS

VARIABLE ta,tb,tc,td : bitvector(a'RANGE);

BEGIN
ta a;
tb b;
tc C;
td d;

-- for now, the voter simply returns the last value which isn't masked out
-- this is ok because faults aren't being handled yet

IF presenceC) THIN
result :- a;

END IF;

IF presence(l) TEEN
result :- b;

END IF;

IT presence(2) TEEN
result :- c;

END IF;

IF presence(3) TEEN
result :- d;

END IF;

-- result :-(ta RAND tb RAND tc) OR (ta AND tc AND td) OR
resul(tb AD tc AND td) OR (ta AND tb AND td) OR

(ta AND tb) OR (tb OR tc) OR (tc AND td) OR
(ta AND tc) OR (ta AND td) OR (tb AND td) OR

ta OR tb OR tc OR td;

120

unan :- TRUE;

END;

-- PROCEDURE BODY votebit

PROCEDURM vote bit (a,b,c,d : IN bit;
SIGNAL presence : IN presencetype;
syndrome : OUT presence_type;
unan : OUT BOOLEAN;
result . INOUT bit)

IS

VARIABLE ta,tb,tctd bit;
BEGIN

ta a;
tb b;
tc C;
td d;

IF presence(O) TEEN
result :- a;

END IF;

IF presence(1) TEEN
result :- b;

END IF;

IF presence(2) TEEN
result :- c;

END IF;

IF presence(3) TEEN
result :- d;

END IF;

unan := TRUE;

END;

__*** *~ *** ***** .t w .** ***.**.t ** * ** * *** *t **********.**~**************

-- Below are the PROCEDURE BODIES for the overloaded convert to bits
-- procedures
..

-- convert flowcontrol type to bits
--

FUNCTION convert to bits (a : IN flow-controltype)
RETURN bit IS
BEGIN

IF a TEEN
RETURN '1';

ELSE

END IF;
END;

PROCEDURE converttobits (a,b,c,d IN flow control type;

121

ba,bb, bc,bd : OUT bit)
is
BEGIN

-- ASSERT (ba'LENGTH - bb'LENGTH - bc'LENGTH - bd'LENGTH)
-- REPORT "Yo!! Bitvectors passed to convert to bits not the same length"
-- SEVERITY ERROR;

IF a TEEN

ba :- '1';
ELSE

ba : 01;
END IF;

IF b THEN

bb : 1I;

ELSE

bb l 01;

END IF;

IF c TEEN

bc 1';
ELSE

bc :- 01;

END IF;

IF d TEEN

bd
ELSE

bd 'C';

END IF;

END;

-- ***** * ***** * ***t** * tt** *** *** * ** * *** ******* ****** ***** ****t*

-- convert subtypes of INTEGER to bits (limited to 8 bit resolution)

FUNCTION convert to bits (a IN INTEGER)
RETURN bit vector IS
VARIABLE place,ta : INTEGER;
VARIABLE temp : bitvector(7 DOWNTO 0);

BEGIN

place :- temp'RIGET;
ta :- a;

FOR i IN temp'RANGE LOOP
IF (ta NOD 2) - 0 TEEN

temp(place) '0';
ELSE

temp(place) : 1';
END IF;

ta :- ta/2;
place :- place + 1;
END LOOP;

RETURN (temp);
END;

PROCEDURE convertto_bits (a,b,c,d IN INTEGER;
babb, bcbd OUT bit-vector)

IS

VARIABLE place : INTEGER :- 0;

VARIABLE ta,tb,tc,td : INTEGER;

BEGIN
-- ASSERT (ba'LENGTH - bb$LENGTH - bc'LENGTH - bd'LENGTH)

-- R1PORT "Yo!! Bit vectors passed to converttobits not the same length"
-- SEVERITY ERROR;

ta :- a;
tb b;
tc := C;
td :d;

-- The choice of ba is arbitrary since all the bit vectors must be the same size

place :- baRIGHT;
FOR i IN ba'RANGE LOOP

IF (ta NOD 2) = 0 TEEN
ba(place) :=0;

ELSE
ba(place) : 11;

END IF;

IF (tb MOD 2) = 0 TEEN
bb(place) : 01;

ELSE
bb(place) : 11;

END IF;

IF (tc MOD 2)
-

0 THEN

bc(place) : 01;
ELSE

bc(place) 111;

END IF;

IF (td MOD 2) - 0 THEN
bd(place) :-0;

ELSE
bd(place) : 11;

END IF;

ta :- ta/2;
tb : tb/2;
tc :- tc/2;

td :- td/2;
place :- place + 1;

END LOOP;

END;

-- convert class type to bits
..

PROCEDURE convert to bits (a,b,cd : IN classtype;
babb, bc,bd OUT bit-vector)

IS

UEGIN

-- ASSERT (ba'LENGTH - bb'LENGTH - bc'LENGTH - bd'LENGTH)
-- RZPORT "Yo!! Bit_vectors passed to convert_to-bits not the same length"
-- SEVERITY ERROR;

IF a.broadcast TEEN
ba(7) ''

ELSE
ba(7) 101;

END IF;

IF b.broadcast TEEN
bb(7):-''

ELSE
bb(7) :- 0';

END IF;

IF c.broadcast TEEN
bc(7) -';

ELSE
bc(7) :- 0';

END IF;

IF d.broadcast TEEN
bd(7) 11

ELSE
bdI7) '0';

END IF;

convert-to-bits(a.ex-class,b.ex-class,c.ex-class,d.ex-class,
ba (2 DOWNTO 0) ,bb (2 DOWNTO 0) ,bc (2 DOWNTO 0) ,
bd (2 DOWITO 0));

convert -to -bits (a.packet,b.packet,c.packet,d.packet,
ba(4 DOUNTO 3),bb(4 DOWUTO 3),bc(4 DOWNTO 3),
bd(4 DOWNTO 3));

-don't care about the fifth and sixth bits, so don't bother assigning them

END;

-Below are the PROCEDURE BODIES for the overloaded convert-back
-- procedures

-- convert bit to flow -control type

FUNCTION convert-back (a :IN BIT)
RETURN BOOLEAN IS
N G IV

IF a - 1' TEEN
RZTURS(TRUE);

ELSE
RZTURN(FALsE);

EUD IF;
END;

PROCEDURE convert -back C flow-control bit IN bit;
SIGNAL flow-control :OUT flow-control type)

IS

VA4

again
IF flow control_bit -'I' TBZN

flow control <- TRUE;
ELSE

flow-control <- FALSE;
END Ir;

RID;

-- convert bit vector to integer

PROCEDURE convert back t bits ZX bit vector;
SIGNAL int : OUT INTEGER)

is
VARIABLX temp INTEGER 0;
VARIABLE place INTEGER 0;

BEGIN
FOR i IN bitt'REVERSE RANE LOOP

IF bits(i) - 'I' TEEN
temp :- temp + power of 21place);

END IP;
place :- place + 1;

END LOOP;
int <= temp;

END;

-- convert a bit vector to a class

PROCEDURE convert back (bits : IN bitvector;
SIQNAL class OUT classtype)

Is
BEGIN
Ir bits(7) - 1', TEEN

class.broadcast <- TRUE:

ELSE
class.broadcast <- FALSE;

END IP;

conve:7 back(bits(2 DOWNTO 0),class.ex class);
convert back(bits(4 DOWNTO 3),class.packet);

END;

ED voterpackage;

10.4. Testewh Package
__ttt *** * * t***********tt *** ********t****** * *** ****** * *****

-- This package contains subprograms and constants used by the
-- testbench. Its primary purpose is to abstract away the file reading
-- and writing from the testbench architecture

LIBRARY score;
USE score.scoreboardpackage.ALL;
USE std.textio.ALL;
USE std.stdlogic.ALL;
USE std.std cmos.ALL;

PACKAGE tbpackage IS

-- These constants must be the same value as those in "config.h"

CONSTANT bytes_per_CTentry : INTEGER;
CONSTANT bytesper_SERP_entry : INTEGER;
CONSTANT num ne : INTEGER;
CONSTANT pe perne : INTEGER;

TYPE int array IS ARRAY (NATUFAL RANGE <>) OF INTEGER;

-- readserp_ertry reads one SERP entry from an external file
-- the name of the file is contained in the following declaration,
-- which shoul(be modified as needed.

FILE testdata : TEXT IS IN "/usr/usr/ftpp/dennis/score/sbr2.2/test.i";

PROCEDURE getstatus (input_file : IN TEXT;
regenerate_ct : OUT BOOLEAN;
num vids : OUT INTEGER;
num_ serpentries : OUT INTEGER;
num_messages : OUT INTEGER);

PROCEDURE get numserpentries (input_ file IN TEXT;
num entries : OUT INTEGER);

PROCEDURE readserpentry (input _file : IN TEXT;
serpentry : OUT serp type);

PROCEDURE get numvids (inputfile IN TEXT;
numvids : OUT INTEGER);

PROCEDURE regenerate_ct (inputfile IN TEXT;
regenerate : OUT BOOLEAN);

PROCEDURE read-ct-entry (input_file : IN TEXT;
ct_entry : OUT cttype);

PROCEDURE getmsglength (input_file : IN TEXT;
msglength : OUT INTEGER);

PROCEDURE read_msgentry (inputfile : IN TEXT;
msg entry : OUT msgtype);

END tbpackage;

* ** * * **** *

-- Testbench Package Body
--- ----------------

PACKAGE BODY tb package IS

-- These constants must be the same value as those in "config.h"

CONSTANT bytesper CT entry : INTEGER :- 8;
CONSTANT bytesper_SERP entry . INTEGER :- 4;
CONSTANT num ne : INTEGER :- 5;
CONSTANT peper_ne : INTEGER :- 8;

-- PROCEDURE get status

-- This PROCEDURE reads the status line of the input file to determine

-- whether to perform a ct update, and if so how many VID entries to

-- read. It also returns the number of SERP and message entries there
-- sre before the next status line

--

PROCEDURE get _status (input file : IN TEXT;
regenerate ct : OUT BOOLEAN;
num vids : OUT INTEGER;
numserp entries : OUT INTEGER;

nummessages : OUT INTEGER

Is

VARIABLE i : line;
VARIABLE good BOOLEAN;
VARIABLE temp INTEGER;

BEGIN
readline(input file,l);
read(l,temp,good);
IF temp - 0 TEEN

regenerate_ct FALSE;
ELSE

regener - = TRUE;

END IF;
ASSERT a
REPORT ". - t read number of SERP entries -- HALTING"

SEVERITY FAI.WRE;

read(l,numvids,good);
ASSERT good
REPORT "Could not read number of SERP entries -- HALTING"
SEVERITY FAILURE;

read(l.numserpentries,good);
ASSERT good
REPORT "Could not read number of SERP entries -- HALTING"
SEVERITY FAILURE;

read(l,num_messages,good);
ASSERT good
REPORT "Coud not read number of SERP entries -- HALTING"
SEVERITY FAILURE;

END;

K ISA.-..... ... 7

-- Get num serp entries

-This PROCEDURE determines how many serp entries should be read from
-the input file

PROCEDURE get num aerp entries (input_tile :IN TEXT;
num-entries :OUT INTEGER)

is
VARIABLE 1 :LINE;
VARIABLE good :BOOLEAN;

BEGIN
readline(input file,l);
read(l~num-entries,good);
ASSERT good

MEORT "Could not read number of SERP entries -- HALTING"
SEVERITY FAILURE;

END get _num_serp_entr ies;

-- Read_serp_entry

-This PROCEDURE reads the next serp entry from the input file.

PROCEDURE read-serp entry (input _ file : N TEXT;
serp entry :OUT serp_type)

is

VARIABLE I LINE;
VARIABLE values nt _array(. TO 6);
VPARIISLX good BOOLENN;
VARIABLE temp serp type;

BEGIN

readline(input file,l);

-- extract out the various fields from the line just read
FOR i IN values RANGE LOOP

read(l,values(i) ,good);
ASSERT (good)
REORT "Problem with serp input file"
SEVERITY failure;

END LOOP;

-- assign values to the record fields
IF (values (1) =0) TEEN

temp.obne FALSE;
ELSE

temp.obne TRUE;
END IF;

If (values(2) -0) TEEN
temp.ibnf :-FALSE;

ELSE
temp.ibnf :-TRUE;

END IF;

temp.deSt vid :=values(3);

IF (values (4) -0) TEEN
temp. class.broadcast :-FALSE;

LL3

temp. class. broadcast TRUE;
ASSERT FALSE REPORT "Broadcast message has been read";

ZND IF;

temp. class.packet :-values(5);
temp. class. ex_class :-values(6);

serp entry :-temp;
IND read aerp entry;

-- Regenerate_ct

-This PROCEDURE determines if a new ct must be read in prior to reading
-- another serp.

PROCEDURE regenerate_ci (input file IN TEXT;
regenerate :OUT BOOLEAN)

VARtIABLE 1 :LINE;
VARIABLE temp :INTEGER;

BEGIN
readline (input_- file,1);
read (1,ternp),
IF temp - 1 THEN

regenerate TRUE;
ELSE

regenerate :=FALSE;

END IT;
IND;

-- Get numn-vids

-This PROCEDURE reads the first entry in the input file to determine
-- how many vids to read in

PROCEDURE get-num -vids (input file :IN TEXT;
num-vids :OUT INTEGER)

VARIABLE I1 LINE;
VARIABLE good :BOOLEAN;

BEGIN

readline(input file, 1);
read (1,numvids,good);
ASSERT (good)
REPORT "Problem with CT input file (bad number of vids)"
SEVERITY failure;

RIND;

-- Read ct entry

-This PROCEDURE reads the next ct entry from the input file

PROCEDURE read ct entry (input file :IN TEXT;
ct _entry :OUT cttype)

VAAIABLE 1 LINE;
VARIABLE values int -array (ITO (max_redun_level + 4));
VARIABLE good BOOLEAN;

VARIABLE temp :ct type;
VARIABLE redun :INTEGLR;
VARIABLE temp to :timeout type;

BEGIN
-- the first part reads in the file entry for a vid
readline (input file,1);

read (1,temp.vid number, good);
ASSERT (good)
REPORT "Problem with CT input file (bad VID number)"
SEVERITY failure;

read (1,redun, good);
ASSERT (good)
REPORT "Problem with CT input file (bad redun)"
SEVERITY failure;

FOR i IN 1 TO (redun + 4) LOOP
read(l,values(i) ,good);

ASSERT (good)
REPORT "Problem with CT input file (bad mask or pe location)"
SEVERITY failure;

END LOOP;

read (1,temp to, good);
ASSERT (good)
REPORT "Problem with CT input file (bad timeout value"
SEVERITY failure;

temp.timeout :-temp to;

-- the second part does the decoding and assigning
CASE redun IS

WREN I ->

temp.redun_level simplex;
WREN 3 ->

temp.redun_level triplex;
MHEN 4 ->

temp.redun_level quad;
WVED OTEERS ->

ASSERT FALSE
REPORT "Bad redundancy level - assigning default"
SEVERITY FAILURE;
temp.redun level :-simplex;

END CASE;

-Change when C simulation has been updated

FOR i IN 1 TO (num ne - 1) LOOP
IF values iW - 1 TEEN

temp.presence(I-1) TRUE;
EL3X

temp.presence(i-1) :-FALSE;

END IF;
END LOOP;
FOR i IN 1 TO redun LOOP

temp. members(1i-1) :- values(i + max-redun-level);
END LOOP;

ct _entry :- temp;

END read ct entry;

-- Get msg length

-This PROCIDURZ gets the number of entries in the rnsg file

PROCZDUUZ get insg length (input_file : N TEXT;
msg length :OUT INTEGER)

is
ShGIN
2ND;

-- Read msg entry

-This PROCEDURN reads an entry in the msg input file

PROCZDURE read msg entry (input_file : X TEXT;
msg entry OUT msg type)

is
RZOIN
END read msg entry;

END tbpackage;

10.6.5. Main Control Package
..

-- Main Control Package

-- This package contains types and constants used by the main
-- controller. Its main puprose is to abstract away the state
-- definitions for use with multiple architectures.

LIBRARY score;
USZ score.scoreboardpackage.ALL;
USZ std.stdcmos.ALL;
USZ std.stdlogic.ALL;

PACKAGZ maincontrolpackage IS

-- This type is used by the NE to tell the scoreboerd what to do

TYPE operation type IS (unknown,idle, reset state, updatect,
cleartimeouts,process_newserp, continue);

-- This type is used by the scoreboard to inform the NE of what its doing

TYPE returnoperationtype IS (unknown,idle,busy, resetcomplete,
ctupdatecomplete,clear complete,
messagetosend,processing complete);

-- The following two TYPES contain states for state machine PROCESSes
-- within the main controller.

TYPI ptov_state_type IS (sO,sl,s2,s3,s4);

TYPE serpprocessor_state_type IS (unknown,idle,voteserp, find messages,
sendmessage,processing_complete);

END maincontrol-package;

10.6A& Voted SEEP Package

-- Voted Serp Package

-This package contains types, subprograms, and constants Used by the
sender and voter-timeout entities.

LIBRARY score;
USX score. s-oreboard package .ALL;
USE Std. Std -logic.ALL;
USE std.std-cmos.ALL;

PACKAGE voted serp package IS

TYPE voted -serp type IS RECORD
obne,ibnf flow-control type;

vid is simplex BOOLEAN;
source -vid,dest -vid :vid-type;

class :class-type;
obnesyndrome,ibnfsyndrome,sb-vote syndrome presence type;

END RECORD;

TYPE voted-serp memory type IS ARRAY (INTEGER RANGE <>) OF
voted serp type;

PROCEDURE message is legal (VARIABLE vs entry :INOUT voted serp type;
SIGNAL hi! IN BOOLEAN;
VARIABLZ valid :OUT BOOLEAN);

END voted serp_package;

PACKAGE BODY voted_serp_package IS

PROCEDURE message is legal cVARIABLE vs -entry :INOUT voted serp type;
SIGNAL hlf IN BOOLEAN;
VARIABLE valid :OUT BOOLEAN)

is
BEGIN

IF vs -entry.vid is simplex AND vsentry. class. broadcast THEN
valid FALSE;

ELSE
valid :-TRUE;

END IF;

END;

END voted serppackage;

10.6.7. P11) to VII) Package

-- Pid_to vid package

-This package contains a few declarations useful to the pid to
-- vid translation table.

LIBRARY score;
USE score. addre s spackage. ALL;
USE score.scoreboardpackage.ALL;
USX std.std cmos.ALL;
USE std.std-loqic.ALL;

PACKAGE pid_to_vid package IS

CONSTANT table-size :INTEGER :-num ne * pe per ne + 2*max vid;

-For now, this type is exactly equivalent to ct type. However, in the
-future, the members part will be different since it will store an
-address rather than an encoded location.

TYPE pid-tc-vid entry type. IS RECORD
vid :vid_type;
redun-level :redun level type;
presence presence type;
members members type; -- these are really addresses
timeout timeout type;

EHD RECORD;

TYPE pid_to_vid table type IS ARRAY(INTEGER RANGE <>) OF
pidjto_vid_entry_type;

-TYPE vids -in -system is used to keep track of all the vjds in the system.
-The sender uses it to cycle through the voted serp memory looking for messages

TYPE vids-in_system memory type IS ARRAY (INTEGER RANGE <>) OF address_type;

END pid_to_vid_package;

10.M.. Dual Port RAM Package

-- Dual Port Ramn Package

-This package contains types and constants for the dual port ram

LIBRARY score;
USE score, scoreboard package. ALL;
USZ std.std-iogic.ALL;

PACKAGE dpram-package IS

CONSTANT write :t wlogic;

TYPE serp memory type IS ARRAY (INTEGER RANGE <>) or serp type;
TYPE msg_memory type IS ARRAY (INTEGER RANGE <>) or msg type;
TYPE ct-memory type IS ARRAY (INTEGER RANGE <>) or ct-type;

END dpram package;

PACKLAGE BODY dprair,_package IS

CONSTANT write t-wiogic :- o;

END dprar package;

...

LIURhRY score;

USE std.stdlogic.ALL;
US& score, scoreboard package .ALL;
USE score.main -control package.ALL;
USE score. pidt 0vid pacxage .ALL;
USE score.voted_serppackage.ALL;
USX score.addresspackage.ALL;
ENTITY scoreboard IS

PORT

message_ to send: OUT BOOLEAN;
operation-out: OUT retiirn operation type;
operation in: IN operation type;
hir: 110 BOOLEAN;
ct -data: IN cttype;
msg data: OUT msg type;
read write: OUT t_wioqic;
clock : In t wiogic;
serp data: IN serp type;
sb address: OUT resolved_address

IND scoreboard;

LIBR.ARY SCORE;

USX std.stdlogic.ALLL;
ARCHITECTURE scoreboard 0f scoreboard IS

COKPONENT vote-timeout
PORT

clock: IN r _wlogic;
serp_data: IN serp type;
voted_serp data: OUT voted serp type;
ptov address: OUT resolved-address :-high_z_address;

ptov -rw: OUT t -wioqic;
dpramrw: OUT twiogic;
dpram -address: OUT resolved -address high_ z_address;
ptov data: IN pid_to_vid_entry type;
start_voting: IN BOOLEAN;
done~voting: OUT BOOLEAN;
num-vids: IN INTEGER;
voted_serprw: OUT twiogic;
clear-done: OUT BOOLEAN;
start-_clear: IN BOOLEAN;
voted serp address: OUT address type

END C0NPON1NT;
COMPONENT pidtovid

GENERIC

read-delay: TIME :-10 ns

POR

?ONM

address: IN resolved-address;
ptov_out: OUT pid to -vid entry_ type;
clock: IN t_wiogic;
read-write: IN t-wiogic :- fl;
ptov-in: ZN pid tovid etrytype

END COMPONENT;
COMPONENT vids in system

GENERIC

read-delay: TIME :- 10 ns

PORT

clock: IN twlogic;
address: IN resolved address;
read write: IN t wlogic;
data-in: IN address-type;
data out: OUT address type

END COMPONENT;
COMPONENT address-buffer

PORT

input: INl resolved-address;
output: OUT resolved-address;
clock: IN t_wlogic;
pass-through: IN BOOLEAN

END COMPONENT;
COMPONENT sender

PORT

clock: IN t_wlogic;

voted serp address: 0' sddress_type;
vs-rw: OUT twlogic;
broadcast pending: OUT BOOLEAN;
dpram_address: OUT resolved-address;
dpram_rw: OUT t_wlogic;
msg_data: OUT msg type;
voted_serp_data: IN voted_serp_type;
hlf: IN BOOLEAN;
message to send: OUT BOOLEAN;
start processing: IN BOOLEAN;
done: OUT BOOLEAN;
num-vids: ZN INTEGER;

continue: ZN BOOLEAN;
ctupdate: ZN BOOLEAN;
via-data: IN address_type;
vis -rw: OUT tvwlogic;
vis -address: OUT resolved-address;
pass through: OUT BOOLEAN

IND COMPONENT;
COMPONENT voted_serp memory

GENERIC

read delay: TIME :- 10 ns

PORT

portO in: IN voted_serp_type;
portO out: OUT voted_serp type;
portO address: IN address type;
porti address: IN resolved-address;
porti out: OUT voted-serp type;
clock: IN t-viogic;
portOrw: IN t_vlogic;
portlrw: IN t-wiogic :- fl

END COMPONENT;
COKPONENT main-controller

PORT

dpramrw: OUT twlogic;
ptovrw: OUT t_wlogic;
dpram address: OUT resolved-address :=high_z_address;

clock: IN t_wlogic;

ct-data-in: IN ct type;
operation_in: IN operation type;
operation_Out: OUT return -operation type;
ptov address: OUT resolved_address :- high-z-address;
ptov data: OUT pid to vid entry type;
start_voting: OUT BOOLEAN;
num-vids: OUT INTEGER;
start-clear: OUT BOOLEAN;
clear-done: IN BOOLEAN;
done voting: IN BOOLEAN;
start-sender: OUT BOOLEAN;
sender done: IN BOOLEAN;
message_to_send: IN BOOLEAN;
continue processing: OUT BOOLEAN;
ctupdate: OUT BOOLEAN;
vis -address: OUT resolved-address;
vis_rw: OUT t-wlogic;
vis-data: OUT address type

ZND COMPONENT;

FOR translation table:pid_to_vid
USE CONFIGURATION SCORE.cpid_to_vid_arch;

FOR vis:vids -in system
USE CONFIGURATION SCORE.cvids_in system behavior;

FOR buff: address-buffer
USE CONFIGURATION SCORE.caddress-buffer-behavior;

FOR sender -subsystem:sender
USE CONFIGURATION SCORE.csender-behavior;

FOR voted-serp:voted serp memory
USE OPEN;

FOR controller:main controller
USE CONFIGURATION SCORE.cmain-control-behavior;

SIGNAL SGNLOO0079: address type;
SIGNAL SGNLOOOO18: t vlogic;
SIGNAL SGNLOO0077: resolved address;
SIGNAL SGNLOO0075: BOOLEAN;
SIGNAL SGNLOO0072: BOOLEAN;
SIGNAL SGNLOO0071: BOOLEAN;

SIGNAL SGNL000070: BOOLEAN;
SIGNAL SGNL00044: BOOLEAN;
SIGNAL SGNL00O43: BOOLEAN;
SIGNAL SGNL0042: BOOLEAN;
SIGNAL SGNLOO0040: INTEGER;
SIGNAL SGNLOO0026: BOOLEAN;
SIGNAL SGNLOO0018: pidto vid entrytype;
SIGNAL SGNLOO0012: resolvedaddress :- high_z-address;
SIGNAL ptovrw: t_wlogic;
SIGNAL SGNL000083: t_wlogic :- fl;
SIGNAL SGNLOO0050: t wlogic;
SIGNAL SGNL00099: votedserp type;
SIGNAL SGNLOO0084: resolvedaddress;
SIGNAL SGNLOO0051: addresstype;
SIGNAL SGNLOO0048: votedserptype;
SIGNAL SGNL0096: BOOLEAN;
SIGNAL SGNLOO0098: addresstype;
SIGNAL SGNLOO0032: pid to vid entrytype;
SIGNAL feedbacko: BOOLEAN;

DEGIN

message to send <= feedbackO;

votingsubsystem: votetimeout

PORT MAP (
votedserpaddress => SGNLOO0051,
start clear -> SGNLO00042,
clear done -> SGNLO0043,
votedserprw => SGNLOO0050,
numrvids => SGNLOO0040,
done_voting -> SGNL00044,
start_voting -> SGNLOO0026,
ptovdata -> SGNL00032,
dpramaddress => sbaddress,
dpram_rw -> read-write,

ptov_rw -> ptovrw,
ptov_address => SGNL000012,

votedserp_data -> SGNLOO0048,
serpdata -> serp_data,
clock -> clock);

translation table: pid tovid
PORT MAP (

ptovin -> SGNL000018,
read_write -> ptovrw,

clock -> clock,
ptovout -> SGNL00032,
address -> SGNL00012);

vis: vids in_system
PORT MAP (

data out -> SGNLOO0098,
data in -> SGNL00079,
read write -> SGNLOO0078,
address -> SGNL00077,

clock -> clock);

buff: address buffer
PORT MAP (

pass through -> SGNLO0096,
clock -> clock,

output -> SGNLOO0084,

& .. 9

input -> SGNLOO0098)

sender subsystem: sender
PORT K&P

pass_through =>SGNLOO0O96,
vis address =>SGNLOO0077,
vis-rw -> SGNLOOOO18,
vis data -> SGNLOOOO98,

ct update -> SGNLOOOO75,
continue =>SGLOO0O72,

num vids ->SGNLOOOO04O,
done -> SGNLOO0071,
start-Processing =>SGNLOOOO70,
message_to_send ->feedbackO,

hif -> hif,

voted -serp data ->SGNLOOOO 99,

msg_data -> rnsg-data,
dpramrw -> read_write,
dpram_address -> sb -address,
broadcast pending -> OPEN,
vs-rw -> SGNI,000083,
voted -serp address -> SGNLOO0084,

clock -> clock)

voted serp: voted serp memory

PORT MAP(
portlrw => SGNLOO0083,
portO-rw -> SGNLOOOO5O,
clock -> clock,
porti _out -> SGNLOOOO99,

portl1_address -> SGNLOOOO84,

portO address -> SGNLOOOO051,
portO out ->OPEN,

portO_in ->SGNLOO0048)

controller: main controller
PORT MAP

vis-data -> SGNLOO0079,

vis _rw -> SGNLOO0078,

vis address -> SGNLOO0077,
ct-update -> SGNLOO0075,
continue_processing -> SGNLOOOO72,

message_to-send -> feedbackO,
sender-done ->SGNLOOOO71,

start sender ->SGNLOCO070,

done-voting ->SGNLOO0O44,
clear-done ->SGNLOOOO43,
start -clear ->SGNLOO0O42,
num-vids -> SGNLOOOO4O,

start -voting -> SGNLOO0026,
ptov-data -> SGNLOCO018,
ptov address -> SGNLOOOO12,
operation -out ->operation out,
operation-in ->operation_in,
ct data in -> ct data,

clock -> clock,
dpram -address -> sb_address,
ptov-rv = ptovrw,
dpramrw ->read_write)

END scoreboard;

CONFIGURATION cacoreboard behav Of scoreboard IS

140

FOR scoreboard

FOR controller :main-controller
usE couriGURATION score. cmain control-behavior;

ZND FOR;

FOR trans lation_table :pid_to Vid
VSE CONFIGURATION score. cpid_tovidarch;

END FOR;

FOR vis :vids_in-system
us% COuFiGURATioN score.cvids_in_system_behavior;
END TOR;

FOR voting subsystem :vote_timeout
USE CONFIGURATION score. c'ote-t imeout-behav;

END FOR;

FOR voted serp :voted_serp_memory

USE CONFIGURATION score. cimproved voted-serp_memory;
END FOR;

FOR sender subsystem sender

USE CONFrGUiATION score. csefder-behavior;
END FOR;

FOR buff .address_buffer
USE CONFIGORATION score.caddreSS-buffer-behavior;
END FOR;

END FOR;

END cscoreboard behav;

141

10.6. 10. DualPort BRn

LIBRARY score;

USE std. stdlogic.ALL;
USX score, scoreboard package .ALL;
USE score.dprampackage.ALL;
US! score.activepackage.ALL;
USE score.address_package.ALL;
ENTITY dpram IS

GENERIC

read_delay: TIME :-10 ns

P ORT

clock: IN twiogic;
BctOut: OUT cttype;
Bserp out: OUT serp type;
addressl: IN address-type;
address0: IN address_type;
Bmsg in: IN msg type := defmsg;
Arrsq_out,: OUT msq type;
Act -in: IN ct type;
Aserp in: IN serp type;
Rh'1: IN t_wiogic;
RWO: IN t_wloqi4c

END dpran;

ARCBITZCTURE dprambehav OF dpram IS

BEG IN

AC : PROCESS(clock,address0,addressl ,rw0,rw2)

VARIABLE serpl1memory :serp_memory type (mem_base TO 3*dpram_size)
VARIABLE msg memory :msg_memory type (mem_base TO 3*dpram_size);
VARIABLE ct_memory :ct_memory type (mem_base TO 3*dpram size);

VARIABLE ran process_once :BOOLEAN := FALSE;
VARIABLE vid : vi4d_type :=0;

BEGIN

-This loop simply writes all the VID numbers into the
-vid -number field of each CT entry. In the future, this will be
-done by resetting the scoreboard. I do it here to save on simulator
-time since this will be done by the time the simulator comes
-- up.

IT NOT ran process_once THEN
FOR i IN 0 TO (max-vid - 1) LOOP

ct-memory(ct -base + i) .vid-number :- vid;
vid :- vid + 1;

IND LOOP;

ct_memory(ct base + max_vie) .vid-number :- max-vid;
ran process once :- TRUE,-

142

KID IF;

IT clock - fl AND clock'EVENT Till

-- take care of data port 1
IF rwO - wirite Till

serp-memory(addressO) :-Aserp_in;
ct -memory(addressO) :- Act-in;

ZLSE
Ainsq_out c- msgmemory(addressO) ArTZR read-delay;

END IF;

-- take care of data port 2
IF rwl - write Till

msgmemory(addressl) :- Bmsq_in;
ZLSZ

Bserp out <- serp_memory (addressl1) ArTER read_delay;
Bct out <- ct-memory (address 1) AFWZR read delay;

KID 1i;
KID IT;

KID PROCISS;

END dprarn_behav;

CONFIGURATION cdprambehav OF dprarn IS
FOR dpram behav
KID FOR;

END cdprambehav;

143

.L.....

10.6.11. Voted SEEP Memory

LIBRARY score;

USE std. std logic .ALL;
USE score, scoreboard package .ALL;
USE score.voted_serppackage.ALL;
USE std.std-cmos.ALL;
USE score, address -package .ALL;
ZNTITY voted-serp memory IS

GENERIC

read-delay: TIME :-10 ns

PORT

porti_rw: IN t -wlogic :-fl;
porto_rw: IN t-wiogic;
clock: IN t_wiogic;
porti_out: OUT voted_serp_type;
portl_address: IN resolved-address;
portO_address: IN address type;
portC_out: OUT voted serp type;
porto_in: IN voted_serp type

END voted_serp memory;

-Improved Voted Serp Memory Behavioral Architecture

-This file contains an improved behavioral architecture of the voted
-serp memory. It splits the memory operation into two parts, an
-- asyn~chronous part and a synchronous part. .

ARCHITECTURE improved_voted_serp memory OF voted serp memory IS

SIGNAL asynchportO_out,asynchportl out : voted_serp_type;

BEGIN

asynch : PROCESS clock, port 0_address, portl Iaddress, port 0_rw, portl _rw)

VARIABLE voted_serpmem:
voted serp_ memory_ type (mem-base TO dpram size);

BEGIN
IF portO rw - fO TEEN

voteds serp mem (porto Oaddr es s) :- portO-in;
ILSE

asynch portO out <- voted serp mem (port 0 address);
IND IF;
asynch portl out <- voted serp mem (port 1-address);

IND PROCESS;

synch : PROCSS(clock)
3BEGIN

IF clock - fl AND clock'EVENT TEEN
porti_Out <- asynchportl out ATTER read_delay;

144

portO out <- asynch portO out AlTZR read delay;
END IT;

END PROCESS;

END improved voted serp memory;

CONFIGURATION cimproved voted_serp memory or voted_serp memory IS
FOR improved voted_serp_memory
END FOR;

END cimproved voted_serp_memory;

145

10.6.12. PID) to VWD Table

LIBRARY score;

USE std.std_logic.ALL;
USX score, scoreboard package .ALL;
USE score. pid to vid package .ALL;
USE std.std cmos.ALL;
USE score, address package .ALL;
ENTITY pid_to_vid 1S

GENERIC

read-delay: TIME :-10 ns

PORT

ptov in: IN pidtovid_entry_type;
read write: IN t_ wlogic : l
clock: IN t_wlogic;
ptov_out: OUT pidto_vid_entry type;
address: IN resolved-address

END pid-to-vid;

--
-- Pid-to-vid-arch

-This is the behavioral architecture for the pid-to-vid translation
-table. Its basically just a simple memory.

ARCHITECTURE pidto_vid_arch or pidto_vid IS
BEGIN

simple : PROCSS(clock,address,read_write)

-NOTE that the table is MUCH larger than it has to be so that the
-same resolution function can be used for ALL addresses. If the table
-were smaller, a different high_z_address and resolution function
-- would need to be defined for each address range.
-- This way, when addresses are dropped to bits, no contortions will
-result from inconsistencies

VAZIABLE pid-to-vid-t able
pid to vid table type(mem base TO dpram_size);

BEGIN
IT' clock - fl AND clock'EVENT TENN

IF read-write - fO TENN

pid_to_vid-table (address) :-ptov in;
ELSE

ptov out <- pidtovid-table (address) AFTER read_delay;
END IF;

END IF';

END PRoCESS;

END pid-to-vid-arch;

146

CoET!GURATION cpid to vid arch OF pid-to-vid IS

10R pid_to-vid-arch
END TOR;

END cpid_to_vid-arch;

147

10.6. 13. VJDs in System Table

LIBRARY score,

USE std.std_logic.ALL;
USE score, scoreboard package .ALL;
USE std.std-cmos.ALL;
USE score. pid to vid package .ALL;
USE score.address_package.ALL;
ENTITY vids in system IS

GENERIC

read-delay: TIME :- 10 ns

PORT

data out: OUT address type;
data in: IN address type;
read write: IN t_wlogic;
address: IN resolved-address;
clock: IN twiogic

END vids_in system;

-This file contains the ARCHITECTURE for vidsinsysten, a lookup
-table which the sender uses to cycle through the voted_serp memory
-- looking for valid messages.

ARCHITECTURE vids_in system ,behavior OF vids_in system IS

BEGIN

memory : PROCESS (clock, address, read-write, data-in)

VARIABLE vis -memory:
vids-in_system memory type (mem_base TO dpram size);

BEG IN
IF clock - fl AND clock'EVENT THEN

IF read write - fo THEN
vis-memory(address) :- data-in;

ELSE
data -out <- vis-memory (address) AFTER read-delay;

END IF;

END IT;
END PROCESS;

END;

CONFIGURATION cvids in system_behavior Of vids_insystem IS
FOR vids in system_behavior
END FOR;

END cvids in system-behavior;

148

10A614. Voting and Timeout Hardware

LIBRARY score;

LIBRARY voters;

US& std.stdlogic.ALL;
USX score. scoreboard package .ALL;
USE std. std-cmos .^LL;
USX score .pid to -vid package .ALL;
USE score.voter-package.ALL;
USE score.voted_serp'package.ALL;
USX score.addresspackage.ALL;
ENTITY vote-timeout IS

PORT

voted-serp address: OUT address type;
start clear: IN BOOLEAN;
clear done: OUT BOOLEAN;
voted serp_rw: OUT twiogic;
num vids: IN INTEGER;
done_voting: OUT BOOLEAN;
start voting: IN BOOLEAN;
ptov -data: IN pid-to-vid_entry__type;
dpram -address: OUT resolved-address :- high z_address;
dpram -rw: OUT t wlogic;
ptov-rw: OUT t -wlogic;
ptov address: OUT resolved-address :- high_ z_address;
voted-serp data: OUT voted_serp_type;
serp data: IN serp type;
clock: IN twlogic

END vote-timeout;

-Voter and Timeout Behavioral Architecture

-This architecture conatins the (very) behavioral description of the
-voting and timeout hardware. This first architecture is composed
-entirely of process statements which communicate via signals.

ARCRITZCTURZ vote-timeout-behav 0F vote-timeout 1S

TYPE temp state type IS (idle, vote, check -timeouts C;
SIGNAL temp state :temp state type :- idle;

SIGNAL vote-state :vote_state_type;

-timer-value holds the value of the timer.

SIGNAL timer-value : timer_range;

-Declare the signals that will be used to communicate between
-- processes

SIGNAL voted_serp entry :voted_serp type;
SIGNAL vote-values serparray(O TO (max_redun-level -1));

SIGNAL current vid vid type;
SIGNAL presence :presence type;
SIGNAL tireout-value :timeout type;
SIGNAL read -obne -timeout,read -ibnf timeout :t_wiogic;
SIGNAL obne-timeout_address,ibnf-timeout-address :address type;
SIGNAL vid-is_simplex :BOOLEAN :-FALSE;

-vote-now tells the voter process to vote the vote-values

SIGNAL vote-vid-now,done voting vid :BOOLEAN :-FALSE;

-- Declare the signals which exit the voter

SIGNAL voted_obne,voted_ibnf :flow_control type;
SIGNAL voted-dest vid :vid type;
SIGNAL voted_class class type;

BEGIN

-controller PROCESS implements the voter sub-controller. It reads in SERP
-entries using the pid-to -vid -table, votes them, checks timeouts, collects
-the three syndromes, and then collects all the voted data into a voted serp
-record and writes it into the voted_serp memory.

controller :PROCESS(clock,start _voting)

VARIABLE temp dpram address :address type;
VARIABLE vids-voted ,INTEGER :=0;

VARIABLE current ptov entry :pid~to~vid~en try type;

-nuin members is redun-level converted to a nuhnber, used as a loop control index

VARIABLE num-members :INTEGER;

-current-member is the index into the members array of the current_ptov_entry

VARIABLE current_member :INTEGER;

BEGIN
IF clock - fl AND clock'EVENT TEEN

CASE vote-state IS

-State vO is the idle tate

WIRY vO ->

doneVot-ing <- kALbk.;
ptov_rw <- zO;
dpramrw <- zO;
dpram address <- high z address;
voted -serp rw <- zO;
vids-voted :- 0;
vote state <- vO;
if start voting TEEN

ptov address <- vids voted;
ptov-rw <- fl;

dpramrw <- fl1;
vote state <- vi;

19ND IT;

-States vi to v4 read in the ptov entry and then each SERP entry in
-- the VID
-Be careful of the array bounds since current member goes from 1 TO 4
-while members type goes from 0 TO 3.

-wait for the ptov data to appear

VERY vi -

vote-state <- v2;

WERE v2 ->
current ptov entry :-ptov data;
current vid <- current ptov entry.vid;

num-members redun-to-int (current ptoventry. redun-level);
timeout value <- current_ptov_entry.timeout;
presence <- cur rent pt ov_ent ry. presence;
vidis simplex <= (current ptov entry.redun-level - simplex)
current-member :- 0;

vote_state
<= v3;

-Th e se next two states read each SERP entry in the VID into the
s- erp array

VERN v3 =

-Check to see if redun level serp entries have been read

IT NOT (current-member - nurn-members) TERN

-If not, then go on to read the serp entry from the dpram

temp_dpram_address :-serp base +
current ptov_entry.members (current_member);

dpram address <- tc- r dpram-address;
vote-state <- v41,

-If so, then go on to the voting state

vote state <- V6;
END ir;

-wait for the serp data to appear

VEIN v4 -

vote-state <- v5;

-v5 simply assigns the serp data which appears on the data line to vote-values

VEIN v5 -

vote values (current-member) <- serp-data;

151

current-member :- current-member + 1;

votestate <- v3;

-- End section to read in the serp entries

-- v6 tells the voter to vote and increments the vids voted variable

WHEN v6 ->

vote vid now <- TRUE AFTER clockperiod/2;
vote-state <- v7;

-- v7 simply idles while the timeouts are being checked

WHEN v7 ->

IF donevotingvid THEN
vote-state <= v8;

ELSE
vote state <- v7;

ZND IF;

-- voting is done, so write the voted serp data into the voted serp memory

WHEN v8 ->
vote vid now <= FALSE AFTER clockperiod/2;
votedserpdata <= votedserpentry;
voted_serpaddress <= currentptov entry.vid;
voted_serprw <= fO AFTER clockperiod/2;
vids voted :- vids voted + 1;
votestate <- v9;

WHEN v9 ->
votedserprw <- fl AFTER clockperiod/2;
vote-state <= vl0;

-- vlO checks to see if all vids have been voted. If so, then it signals that
-- voting is done and idles the voter subcontroller

WHEN vlO -
votedserprw <- fl;
IF vids-voted - num vids THEN

done voting <- TRUE;
votestate <- vO;

ELSE

-- assert next ptov table address and start over

ptovaddress <- vids voted;

vote state <- vl;
END iV,

END CASES;
END IF;

END PROCESS;

~~* * * ** *** *** ** **5** *5 5 5 5 ** * ** * ** ** * *S.** *

15

-voter PROCESS :this proces implements the voter. It uses overloaded
-- operators to convert the incoming data to t - iogic -vectors, votes it
-- (bit for bit majority), and then converts it back to its origina'
-- high-level form.

voter :PROCESS(clock,vote_vid_now)

-For simplicities sake, the timeout memories are contained in this PROCESS
-- This allows faster verification while not sacrificing the readability
-of the timreout rules

VARIABLE obne -timeout -memory timeout-memory type(O TO max-vid);
VARIABLE ibnf-timeout-memory timeout-memory type(O TO max-vid);

VALRIABLE to-address :address_type;
VARIABLE to-set :BOOLEAN;
VARIABLE diff :timeout_type;

VARIABLE obne-unan,ibnf unan :BOOLEAN;

SEGIN
IF clock - fl AND clockEVENT THEN

CASE temp_state IS

WHEN idle =>

IT vote-vid-now THEN
temp_state K- vote;
END IF;
done_voting vid <- FALSE;

WHEN vote -
vote vid (voted -serp entry, vote values, current vid, presence,
obne -unan,ibnf-unan);
voted serp entry.vid is simplex <- vjd is simplex;
temp state -<- check_timeouts;

WHEN check-timeouts =

-- Check obne timeout

to-address :- voted serp entry.source_vid;
to_set :-obne_t ime out _memo ry (to address) .timeout-set;

-Unanimous? If so, then clear any timeout set on the VID

IF obne-unan THEN
obne-timeout memory(to-address) .timeout_set :-FALSE;

-Majority? If so, then set a timeout if one hasn't been set or check for
-timeout expiration if one has been set

XLSIF voted_serp-entry.obne TEENV
IF obne-timeout memorycto-address) .timeout-set THEN

-Check for timeout expiration

diff :-abs(timer-value-obne-timeout-memory(to_address) .value);

-no faults for now

IF (diff > timeout-value) TEEN
NOLL;

ELSE
voted serp entry.obne <- FALSE;

END IT;

-- set a timeout

ELSE
obne -timeout -memory (to address) .value timer value;
obne -timeout memory(to~address) .timeout-set :-TRUE;
voted -serp_entry.obne <- FALSE;

END XV;
END IT;

-- End obne timeout check
---------- --

-Check ibnf timeout

to-address :-voted serp entry.source_vid;
to-set :-ibnf-timeout_memory(to address) .timeout-set;

-Unanimous? If so, then clear any timeout set on the VID

IF ibnf unan TERN
ibnf-timeout-memory (to address) .timeout-set :-FALSE;

-Ma jority? If so, then set a timeout if one hasn't been set or check for
-timeout expiration if one has been set

ELSIr voted serp_entry.ibnf TEEN
IF ibnf-timeout memory (to_address) .timeout_set TERN

-Check for timeout expiration

diff :-abs(timer-value-ibnf-timeout_memory(to_address) .value);

-no faults for now

IV (diff > timeout-value) TEEN
NULL;

ELSE
voted_serp_entry.ibnf <- FALSE;

END IT;

-set a timeout

ELSE
ibnf -timeout-lnemory(to -address) .value timer -value;
ibnf -timeout-memory (to address) .timeout-set :-TRUE;
voted serp-entry.ibnf <- FALSE;-

E IT;
E9ND IT;

-End ibnf timeout check
---------- --

done -votinqvid <- TRUE ArTER clock_period/2;
temp state <- idle;

END CASE;
END IF;

END PROCESS;

'54

-obne-timeout-chee PROCESS :implements the obne timeout checker

-- obne-timeout-checker :PROCESS (clock, read-obne_timeout,

-- ibnf-timeout-address)

-- VARIABLE obne-timeout_memory :timeout_memory type(O TO max-vid);

-- BEGIN
-- END PROCESS;

-- ibnf-timeout_checker PROCESS :implements the ibnf timeout checker

-- ibnf-timeout-checker :PROCESS (clock, read_ibnf-timeout,
-- ibnf-timeout-address)

-- VARIABLE ibnf-timeout_memory :timeout_memory type(O TO max-vid);

-- BEGIN
-- END PROCESS;

-timeout clearer PROCESS :this process clears both the ibnf and obne
-- timeout memories

timeout -clearer :PROCESS(clock,start clear)
BEGIN

IF clock = fl AND clock'EVENT THEN

IF start-clear THEN
clear-done <- TRUE;

ELSE
clear-done <= FALSE;

END IF;
END IF;

END PROCESS;

-timer PROCESS :this process implements the timeout timer. It counts from
-1 to max timer value and then wraps around

timer :PROCESS(clocki

VARIABLE temp timer value :timer range 0;

BEGIN

IF clock - fl AND clock EVENT THEN
IF NOT (temp timer_value - max_timer_value) TEEN

temp _timer_value :=temp_timer-value + 1;
ELSE

temp_timer_value init timer -value;
END IF;
timer -value <- temp_timer_value;

END IF;

END PROCESS;

END vote-timeout-behav;

-- Provide a default configuration

CONFIGURATION cvote -timeout-behav or vote_timeout 1S

FORl vote-timeout-behav
2ND FOR;

ZND cvote-timeout-behav;

..

10.6.15. S u
LIBRARY score;

USK std. stdlogic.ALL;
USE std.std cmos.ALL;
USE score.scoreboard_package .ALL;
USE score. voted serp package .ALL;
USE score, address package .ALL;
ENTITY sender IS

PORT

pass_through: OUT BOOLEAN;
via address: OUT resolved-address;
vis rw: OUT t -wiogic;
vis -data: IN address type;
ct-update: IN BOOLEAN;
continue: IN BOOLEAN;
num vids: IN INTEGER;
done: OUT BOOLEAN;
startyproces sing: IN BOOLEAN;
message to_send: OUT BOOLEAN;
hlf: IN BOOLEAN;
voted-serp data: IN voted_serp type;
msg_data: OUT msg type;
dpramrw: OUT twiogic;
dpram -address: OUT resolved address;
broadcast pending: OUT BOOLEAN;
vs-rw: OUT t_wiogic;
voted -serp address: OUT addresstype;
clock: IN t_wlogic

END sender;

-This file contains the behavioral architecture for the sender
-entity. It's job is to cycle through the voted serp looking
-for messages to send. When it finds a valid message, it gathers
-all the information which the NE requires and then informs the
-NE that a message needs to be sent. After it is sent, the sender
-continues processing until either another message is found or all
-voted serp entries have been processed.

-NOTE: Broadcasts are not implemented yet.
-FIXES REQUIRED : clearing of the IBNF bit after a message is sent

-- valid message checking (NULL dest -vid delivery)
-- invalid destination VID checking

ARCEITECTURZ sender-behavior OF sender IS

TYPE sender-state type IS (sendO,sendl,send2,send3,send4,send5,
send6, send7, send8);

SIGNAL sender state : sender_state__type;
SIGNAL time-stamper signal :TIME :-0 ns;

BEGIN

senderstate_machine : PROCESS(clock,startprocessingcontinue)

-- Wheretostart tells the sender where to begin looking for valid messages
-- (its a pointer into the vids_insystem translation table) This ensures
-- fairness because the same VID cannot keep sending a message to the exclusion
-- of others.

VRIJA.LE whereto start : addresstype :- 0;
VkRIABLE temp_vis_address : address type :- 0;
VARIABLE valid_message : BOOLEAN TRUE;
VARIABLE source_entry,destentry votedserp type;
VARIABLE message : msgtype;

BEGIN
IF clock - fl AND clock'EVENT TEEN

CASE sender-state IS

WE N sendO ->
IF startprocessing TEEN

temp evisaddress :- wheretostart;
Vis_address <= temp visaddress;
visrw <- fl;
vs rw <= fl;

passthrough <= TRUE;
sender state <= sendl;
done <= FALSE AFTER clockperiod/2;

ASSERT FALSE REPORT "Beginning scan for valid messages";
ELSE

done <= FALSE;

passthrough <= FALSE;
dpramrw <= zO;
vis rw <= zO;
vs rw <- zO;
voted_serpaddress <- high zaddress;
visaddress <- high_z_address;
dpramaddress <- high_zaddress;

END IF;

-- sendl is a wait state for the vidsin system memory

WREN sendl ->

IF tempvis address - num vids TEEN
tempvisaddress :- 0;

ELSE
temp_vis address :- temp_vis_address + 1;

END IF;
sender-state <- send2;

-- send2 waits for the votedserpmemory

WEEK send2 ->

sender_state <- send3;

-- send3 checks the OBNE of the voted serp entry. If its set, it asserts the
-- address of the destination vid to check its IBNF.

WIEM send3 ->

source entry :-voted_serp data;
IF sour ce_ent ry. obne TERN

-This VID wants to send a message (very badly, I may add) , so check the IBNF
-of the destination VID. Also check for illegal messages.

IF source -entry.vid -is_simplex TEN
message_is_legal(source_entry,hlf,valid message);

K LS K
valid -message :-TRUE;

END) IF;-

IF valid message TERN
pass-through <- FALSE;
voted_serp address <- source entry.dest-vid;
vs-rw <- fl;
sender_state <- send4;

ZLSE
sender state <- send8;

END IF;
ELSE

sender state <- send8;
END IF;

-Wait for the data to appear on the data lines

WEN send4 ->

sender_st ate <- send5;

WHEN send5 ->

dest_entry :=voted serp data;
IF (dest-entry.ibnf) TEN

-A valid message exists, so assemble a message data structure and signal the
-main controller. Also begin a write to the voted serp memory to set
-the ibnf processed field to TRUE. This prevents two messages from being
-sent to the same VID in the same SERP round. (not implemented yet)

sender _state <- send6;
E LSE

sender state <- send8;
END IFr;

WHEN send6 =

message. sourcevid :-source -entry.source_vid;
message. dest_vid :-source entry.dest -vid;
message.class :-source_entry.class;
message. vote_syndrome source-entry.sb vote syndrome;
message. obne_syndrome source_entry.obne_syndrome;
message. ibnf_syndrome source_entry.ibnfsyndrone;
message.timestamp :-time stamper signal;

-NOTE sources and dests fields of msg type are not implemented yet

msg data <- message;
dpram -rw <- fO;
dpram -address <- msg base;
message_to_send <- TRUE;
sender-state <- send7;

VENY send? ->

dpram-rw <- fl;

messageto_send <- FALSE;
17 continue TZEN

senderstate <- send8;
ELSE

sender state <- send7;
END ZF;

-- Check to see if entire voted serp has been processed. If not, then start
-- the cycle again.

WHE sendS ->

-- Have we processed the entire voted_serp?

IF temp vis address - wheretostart TEH

-- IF yes, then signal DONE and go to the idle state

IT where to start - num vids TERN
where to start :- 0;

ELSE
where to start :- wheretostart + 1;

IND IF;
done <= TRUE AFTER clock_period/2;
sender-state <- sendO;

-- If no, then make sure tempvisaddress hasn't been incremented one too far,
-- assign the new vis address and repeat the cycle.

ELSE
visaddress <- tempvisaddress;
votedserpaddress <= high_z_address;
vis rw ,:- fl;

passthrough <= TRUE;
senderstate <- sendl;

END ZF;

END CASE;
END IF;

END PROCESS;

timestamper_signal <= (timestampersignal + clock period) WHE
(clock - fl AND clock'EVENT) ELSE t i_stamper_signal;

END senderbehavior;

CONFIGURATION csender behavior OF sender IS
FOR senderbehavior
END FOR;

END csender behavior;

160

10.6. 16. Main Controller

LIBRARY score;

USE std.std-logic.ALL;
USE score, scoreboard package .ALL;
USE score.main_control package.ALL;
USE std.std-cmos.ALL;
USE score, active package .ALL;
USE score.pidto_vid_package.ALLL;
USE score. address package .ALL;
ENTITY main-controller IS

PORT

vis data: OUT address-type;
vis rw: OUT t -wiogic;
vis address: OUT resolved-address;
ctupdate: OUT BOOLEAN;
continue_ processing:. OUT BOOLEAN;
message_to_send: IN BOOLEAN;
sender done: IN BOOLEAN;
start sender: OUT BOOLEAN;
done voting: IN BOOLEAN;
clear-done: IN BOOLEAN;
start-clear: OUT BOOLEAN;
num-vids: OUT INTEGER;
start_voting: OUT BOOLEAN;
ptov data: OUT pidtovidentrytype;
ptov address: OUT resolved-address :- high_z_address;
operation out: OUT return operation type;
operation -in: IN operation type;
ct -data in: IN cttype;
clock: iN t _ wloglc;
dpram -address: OUT resolved-address :=high z address;
ptov -rw: OUT t -wlogic;
dprarirw: OUT twiogic

END mai n-cont roller;

-Main Controller Behavioral Architecture

ARCEITZCTURE main-control-behavior OT main-controller IS

SIGNAL ptov_state : ptov_state_type :- SO;
SIGNAL serp processor state : serp-processor_state_type :-unknown;
SIGNAL start_ci_update,ct update_done : BOOLEAN :- FALSE;
SIGNAL start processing,done processing : BOOLEAN :- FALSE;

aEGIN

ASSERT NOT(operation_in - unknown)
REPORT "port OPERATION in main-controller in unknown state"
SEVERITY ERROR;

-The ct update port is used to inform the sender to reset its

161

-- where to start variable. If it didn't, it might end up pointing
-- to a vid which no longer exists

ctupdate <- startct_update;

-- This process simply serves as a dispatcher. The variable
-- tempoperation is used to dispatch in order to prevent two
-- operations to be pending simultaneously. This could occur if
-- dispatching was done off of the operation port itself.

main state machine : PROCESS(clock,operation-in)

VARIABLE tempoperation : operation type :- unknown;

-- opout is used to read the value of t.,e operationout signal. A
-- BUFFER port should be used, but they aren't supported yet

VARIABLE opout : returnoperation_type :- idle;

BEGIN
IF clock - fl AND clock'EVENT TEEN

CASE tempoperation IS
-- provide a kick start out of unknown
WHEN unknown ->

temp_operation :- operationin;
operationout <= unknown;
opout :- unknown;

WHEN idle ->
temp_operation :- operation-in;
operation-out <- idle;
op_out := idle;

-- For now, a reset is defined as updating the CT and clearing all
-- timeouts. This is to avoid multiple drivers. In the future, a reset
-- must also copy all the vid numbers into the -first byte of each
-- CT entry

WHEN resetstate ->
IF NOT ct update_done TEEN

-- The second I is necessary to avoid continually performaing a ctupdate
-- start ct update must be made FALSE at some point before ct_update_done
-- becomes TRUE

IF NOT (op_out - busy) TEEN
start ct update <- TRUE;

ELSE
start ct update <- FALSE;

END IF;

operation out <- busy;
op_out :- busy;

ELSIF NOT cleardone TEEN

-- temporary, remove when timeouts implemented

startclear <- TRUE;
ELSE

temp operation :- operationin;
operation out <- resetcomplete;
opout :- reset complete;

start clear <- FALSE;
END 17;

VEIN update ct ->
IF NOT ct update -done TREE

If NOT (op out - busy) TEEN
start_ct_update <- TRUE;

ELS1
start_ct_update <- FALSE;

END XVr;

operation_out <- busy;
op -out :-busy;

ELSE
temp_operation :-operation -in;
operation-out <- ci update complete;
Op out :-ci update complete;

END IF;

VEIN clear timeouts>
IF NOT clear done TEEN

start-clear <- TRUE;
operation_out <- busy;
op -out :-busy;

ELSE
temp operation :=operation Iin;
operation_out <= clear_complete;
op out :-clear_complete;
start_clear <- FALSE;

END IF;

3323 process_newi_serp ->
IT NOT done_processing TEEN

-The second IT statement prevents the start processing signal from
-remaining TRUE for too long

IF op_out - busy TEEN
st art_proce ssing <- FALSE AFTER clock period/2;

ELSE
start_processing <- TRUE AVTER clock period/2;

END IF;
or'iration out <= busy;
op out :-busy;

ELSE
temp operation :-operation -in;
op out :-processing_complete;
operation_Out <- op out;

END IF;

NINEw continue ->
temp operation :- operation_in;
operation-out <- busy;
Op out :- busy;

END CASE;
END IF;

END PROCES;

-- This state machine implements the pidto-vid translation table
-- qesrator

163

ptov state_machine :PROCESS (clock, start_ct_update)

VARIASLE pid -to -vid -entry :pid_to_vid_entry type;
VARIABLE ct address :address -type :=ct_base;

VARIABLE vids_in system : INTEGER 0,

SEGIN
IT clock - fl AND clock'EVENT TEEN

CASE ptov_state IS

-sO is the idle state

UEEN so ->

IT start_ci update TEEN
ptov_state <- si;

ct update done <- FALSE;
ELSE

ptov state <- sO;
dpram_address <- hiqhz_address;
ptov_address <- highz_address;
vis -address <- high zaddress;
vis rW <- zo;
ptov_rw <- zO;
dpram_rw <- zO;

END XT;

-- £ asserts the ptov address and the ct-address into the dpram

BEEN si -

ptov_address <= vids i nsyster;
dpram address <= ct-address;

ptov_rw <= fl;
dpram_rw <- fli;
ct address :- ct-address + 1;

ptov_state <- s2;

-s2 is a wait state

BREN s2 ->
ptov_state <= s3;

-s3 reads the ct entry at the address asserted by si. If the redun level is
-zero it skips to the next ct entry. Otherwise it constructs a pid to -vid
-table entry and writes it into the table. It also checks to see if its
-reached the end of the ct. If so, it asserts ct update done, tni-states
-the dpram address line, and goes to the idle state(sO)

If NOT (ct-data-in. redun-level - zero) TEEN

-Found a new vid, so increment the counter

vis -address <- vids_in_system;
vis -data <- ct_data-in.vid-number;
vids in system :- vids_in_system + 1;

pid_to_videontry.vid :- ct data -in.vid -number;
pid_to_videntry.redun level:- ci _data-in.redun-level;
pid_to_videntry. presence :- ct_data_in. presence;

pid-tovidentry. members ct dat a-in. members;
pid to videntry.timeout ct_data in.timeout;

ptov data <- pid-to-vid_entry;

-Wait for a falling edge to assert the write signal

ptov-rv <- fO AFTER clock period/2;
vis -rw <- fO ATEZR clock_period/2;
ptov state <- s4;

ELSE

-else go to next ct entry

ptov state <- si;
END IF;

IT ct data in.vid number - max vid TEEN
ASSERT FALSE REORT -Done with translation table";
ptov state <- sO;
ct update_done <- TRUE;

-this is a slight optimization to only assign a value to this port (num-vids)
-once instead of over and over again

nun _vids <- vids in system;

END IF;

-state s4 simply gives enough time for the write signal to be taken

WZEN s4 ->

ptovrw <- fl AFTER clock period/2;
vis-rw <- fl AFTER clock period/2;
ptov state <- sl;

-Appease the syntax deity by including this clause

WREN OTBERS -

ASSERT FALSE REORT "Unimplemented state in ctupdate controller";
ptov_state <- sO;

END CASE;
EID IT;

END PROCESS;

-This process takes care of all the control signals involved in
-processing the SERP

serp processor :PROCESS (clock, start processing,done voting,
sender_done,message_to_send)

IT clock - fl AND clock-EVENT TEEN
CASE serp processor_state IS

INEN unknown ->
serp_prucessor_state <- idle;

WREN idle ->

done_processing <- FALSE;

IF start processing TERN
startvoting <- TRUE;
serp_processor_state <- vote_serp;

ELSE
startvoting <- FALSE;
start sender <- FALSE;

END Zr;

WREN vote_serp ->
startvoting <- FALSE;

1F done voting TEN
start sender <- TRUE;

serp_processorstate <- find messages;
ASSERT FALSE REPORT "SERP Voting Done";

END IF;

WREN findmessages ->
startsender <- FALSE;
continue processing <- FALSE;
IF messageto send TEEN

serp_processorstate <- send_message;
RLSIF sender-done TEEN

serp_processor_state <- processingcomplete;
END IT;

WERN sendmessage =>
IF operation_in = continue TERN
ASSERT FALSE REPORT "Sent a message";

continue processing <- TRUE;
serp_processor_state <- find-messages;

ELSE
serp processor_state <- send_message;

END IF;

WEN processingcomplete ->

done-processing <= TRUE AFTER clock_period/2;
serp_processorstate <= idle;
ASSERT FALSE REPORT "Processing is comvlete";

END CASE;
END IF;

END PROCESS;

END maincontrolbehavior;

CONFIGURATION cmain_controlbehavior OF maincontroller IS
FOR main_controlbehavior
END FOR;

ED cmain_controlbehavior;

16

10.6.17. Address Buffer

LIBRARY score;

USE std.std logic.ALL;
VSE score. scoreboard package.ALL;
USE score. address package.ALL;
ENTITY addressbuffer IS

PORT

pass through: IN BOOLEAN;
clock: IN t_wlogic;
output: OUT resolved_address;
input: IN resolved-address

END address-buffer;

-- This component simply acts as a buffer to turn an address line on
-- and off (tristate);
..

ARCEITECTURE address-buffer behavior OF address-buffer IS

BEGIN

output <= input WREN passthrough ELSE

high_z_address;

END address-bufferbehavior;

CONFIGURATION caddress buffer behavior OF address-buffer IS
FOR address-buffer-behavior
END FOR;

END caddressbufferbehavior;

i1|

10.6.18. Scoreboard Subsystem

LISRARY score;

USX std.std_loqic.ALL;
USX score, scoreboard pack age. ALL;
USE score, addre s spack age. ALL;
USX score.main -control_package.ALL;
ENTITY Sb subsystem IS

PORT

message-to-send: OUT BOOLEAN;
hif: IN BOOLEAN;
operation-out: OUT return_operation type;
operation -in: IN operation type;
msg data -out: OUT msg type;
read -write: In t 7wiogic;
done: OUT t_wiogic;
ct -data-in: IN ct-type;
serp data -in: IN serp type;
address: IN address type;
clock: IN t wiogic

END sb subsystem;

LIBRARY SCORE;

US! std.stdlogic.ALL;
ARCIITZCTURE sb_subsystem OF sb_subsystem IS

COMPONENT scoreboard
PORT

sb-address: OUT resolved-address;
serp data: IN serp type;
clock: IN t_wiogic;
read write: OUT t -wiogic;
msg-data: OUT msg -type;
ct -data: IN ct -type;
hif: IN BOOLEAN;
operation~in: IN operation type;
operation_out: OUT return -operation type;
message_to_send: OUT BOOLEAN

IND CONPONENT;
COMN'3NENT dpram

GENERIC

read delay: TIME :- 10 ns

PORT

RWO: IN t_wlogic;
RWl: In t wloqic;
Aserp_in:- IN serp type;
Act -in: IN ct -type;
Ainag out: OUT msg type;
Bmsg in: IN msg_type :- defmsg;

addressO: IN address_type;
addressl: IN address_type;
Bserp out: OUT serp_ type;
Bct out: OUT ct -type;

clock: IN t-wiogic

END COMMNUT;

FOR behav sb:scoreboard
USE CONFIGURATION SCORE-cscoreboard-behav;

FOR dpram:dpram
USX CONFIGURATION SCORE. cdpram-behav;

SIGNAL sbct: ct type;
SIGNAL sb serp: serp type;
SIGNAL sb-address: address_type;
SIGNAL ab-rw: t_wiogic;

BEGIN

behav sb: score-oard
PORT KAP

message to send -> message_to-send,
tLperation_out -> operation out,
operation_in => operation_in,
hif -> hif,
ct-data -> sbct,
msg data -> msg_data_Out,
read -write -> sb-rw,
clock -> clock,
serp data ->sbserp,

sb-address -sb-address)

dpram: dpram
PORT MAP

clock ->clock,

Bct out -> sbct,
Bserp_out -> sb_serp,
addressl -> sb-address,
addressO ->address,

Bmsq in ->OPEN,

Asmsg out -OPEN,

Act in -> ct data in,
Aserpin -> serp data in,

RWI -> sb rw,
RWO -> read-write)

END sb_subsystem;

----------- ---

1- ihavioral Scoreboard Subsystem Configuration

-This is the configuration for the top-level scoreboard subsystem
----------- ---

CONFIGURATION csb-behav subsystem or sb-subsystem IS

FOR sb-subsystem

FOR dpram:dpram
U8E CONFIGURATION score. cdpram_behav;

END FOR;

169

FOR behav-sb:scoreboard
USE CONFIGURATION score. cscoreboard-behav;

END FOR;

END TOR;

ZND csb behav-subsystem;

CONFIGURATION csb -behav-tb OF sb testbeflch IS
FOR sb-behav -tb
FOR sbs :sb subsystem
USE CONFIGURATION score.csb behav-subsystem;
END FOR;

END FOR;
END csb-behav ib;

170

10.6.19. Te803enm

LIBRARY score;

USE std.std_logic.ALL;
USX score.scoreboard package.ALL;
USE score.tb package.ALL;
USE score.dpram package.ALL;
USE std.std cmos.ALL;
USE score.active_package.ALL;
USE score.maincontrol package.ALL;
USE score.addresspackage.ALL;
ENTITY sb testbench IS

END sbtestbench;

-- Scoreboard Behavioral Testbench

-- This architecture constains code to test the highly behavioral
-- version of the scoreboard model
-- I have liberally used ASSERT statements throughout the design as

". signposts" to when critical actions have occurred. They allow easy
-- zooming to different areas inside of results display
..

ARCHITECTURE sbbehavtb OF sb-testbench IS

COMPONENT sb_subsystem
PORT

message to send: OUT BOOLEAN;
hlf: IN BOOLEAN;
operation_out: OUT returnoperation type;
operationin: IN operationtype;
msgdataout: OUT msgtype;
readwrite: IN twlogic;
done: OUT t wlogic;
ctdatain: IN cttype;
serpdatain: IN serptype;
address: IN addresstype;
clock: IN twlogic

END COMPONENT;

SIGNAL readwrite : t_wlogic :- fl;
SXGNAL operation_in : operation_type :- unknown;
SIGNAL operationout : return_operationtype :- unknown;
SIGNAL hlf : BOOLEAN :- TRUE;
SIGNAL message to send : BOOLEAN;
SIGNAL clock : t_wlogic :- clk_active;
SIGNAL done t_wlogic :- fo;

SIGNAL serp datain : serptype;
SIGNAL ctdata in : ct-type;
SIGNAL msg_data_out : msgtype;
SIGNAL address : address type;

BEGIN

171

sbs : b_subsystem
FORT KAP

message to_send -> message to_send,
hlf -> hlf,
operation -in II> operation in.
operation-out II> operation out,
msg data_out II> msg data out,
read-write II> read -write,
ct-data-in -> ct-data-in,
serp data in -> serp data in,
address -> address,
done -> done,
clock II> clock)

driver :PROCESS

-- declare temporary variables to hold signal values before assignment
I' in front means temporary

VARIABLE tsd serp memory type (0 TO dpram size);
VARIABLE tmsg msg memory type (0 TO dpram size);
VARIABLE tct ct-memory type (0 TO dpram-size);
VARIABLE taddress :address type;

VARIABLE doct update :BOOLEAN :-FALSE;
VARIABLE nun vids :INTEGER :-0;
VARIABLE nun serp entries :INTEGER 0;
VARIABLE num-mes sages. cnum_mes sages INTEGER :=0;

BEGI N

-- read in the ct

-nun vids is the number of vids to read into the simulation

-- process 4 SERPs

FOR i IN 1 TO 4 LOOP
get status(test _data,doct _update,numnvids,numserpentries,

cnun messages);
IF do_ctupdate THEN

FOR i IN 0 TO (num vids - 1) LOOP
read_-ct _ entry (test data,tct (i))

END LOOP;

-write the ct into memory and perform a reset

FOR i IN 0 TO (num vids - 1) LOOP
WAIT UNTIL clock - fO AND clockIEVENT;
address <- ctbase + tct Ci) .vid-number;
et data in <- tct(i);

read write <- fO;

END LOOP;

-must WAIT so that the last ct entry is writen into the dpram

WAIT UNTIL clock - fO AND clockIEVENT;
read-write <- fl;

operation_in <- reset_state;
ASSERT FALSE REPORT "Beginning Initial Reset";

172

WAIT FOR clock period;
operation-in <- idle;

WAIT UNTIL operation_out - reset_complete
AND clock - fl AND clock'EVENT;

ASSERT FALSE MEORT "Initial Reset Complete";
END IT;

-- read in the first SERP

FOR i IN 0 TO (num -serp entries - 1) LOOP
read serp entry (test data. tsd Ci));

END LOOP;

-write the first SERP into memory and begin processing it

FOR serploc IN 0 TO (num_serp -entries - 1) LOOP
WAIT UNTIL clock - fO AND clock'EVENT;
address <- serp_base + serp_loc;
serp data in <- tsd(serploc);
read write <- fO;

RED LOOP;
WAIT UNTIL clock = fO AND clock EVENT;

read write <- fl;
operation in <- process_new -serp;
ASSERT FALSE~ REPORT "Processing F'irst SERP";
WAIT FOR clock period;
operation-in <= idle;

WHILE NOT (operation out - processing_complete) LOOP
IF message to send TERN

num messages :- num messages + 1;
operation -in <= continue AFTER clock perio6/2;

WAIT UNTIL clock - fl AND clock'EVENT;
ELSE

operation_in <- idle AFTER clock period/2;
WAIT UNTIL clock - fl AND clock-EVENT;

RED IF;

IF operation_out = process ing complete TERN
EXIT;

ED IF;

RED LOOP;

END LOOP;

WAIT;

END PROCESS;

clock driver :PROCESS
3EGIN

clock <- NOT clock;
WAIT FOR clock period/2;

END PROCESS;

END sb-behav-tb;

173

10.7. Structul VHDL for tfrVolin and Thneout Hardware

This appendix contains the VHDL source code for the uncompleted structural

architecture of the voting and timeout hardware.

10.7.1. Votin and Timeout Hardware

LIBRARY score;

LIBRARY voters;

USX std.stdlogic.ALL;
USX score. scoreboard package .ALL;
USE std.std-cmos.ALL;
USE score.pid_to-vidpackaqe.ALL;
USE score.voter_package.ALL;
USE score.voted_serppackage.ALL;
USE score.addresspackage.ALL;
ENTITY vote-timeout IS

PORT

voted -serp_address: OUT address_type;
start clear: IN BOOLEAN;
clear done* OUT BOOLEAN;
voted serp_rw: OUT twiogic;
nurr vids: IN INTEGER;
done_voting: OUT BOOLEAN;
start voting: IN BOOLEAN;
ptov -data: IN pidto_vid_entry type;
dpram-address: OUT resolved-address high_z-address;
dpramrw: OCT t_wlogic;
ptovrw: OUT t_wlogic;
ptov address: OUT resolved-address :-high_z-address;

voted -serp_data: OUT voted_serp type;
serp data: IN serp type;
clock: IN twlogic

END vote-timeout;

-Voter and Timeout Structural Architecture

-This ARCZITECTU.K contains the structural implementation of the
-voting and timeout subsection. Actually, its also partly dataflow.

ARCEITECTURE vote timeout-struct OF vote-timeout IS

CONSTANT control delay :TIME :- clock period/4;
CONSTANT obne_bit pos :INTEGER :-;
CONSTANT ibnf-bit pos :INTEGER :- 6;

-In this nexct TYPE, "rse" stands for "read SERP entry" and "v" stands
-- for "vote".

TYPE struct _vote state type IS (rseO,rsel,rse2,rse3,rse4,rse5,vO,
vl,v2,v3,v4,v5,v6,v7?,vSB,v9,vlO);

174

SIGNAL votestate : struct votestate type;

-- The following signals are repositories for intermediate data

SIGNAL voted data : BITVECTOR(7 DOWUTO 0);
SIGNAL unan BIT VECTOR(7 DOUNTO 0);
SIGNAL a syndrome BITVECTOR(7 DOWNTO 0);
SIGNAL b-syndrome BITVECTOR(7 DOWNTO 0);

SIGNAL c syndrome BIT VECTOR(7 DOWNTO 0);
SIGNAL dsyndrome : BITVECTOR(7 DOWNTO 0);
SIGNAL overall_vote_syndrome : presencetype;

SIGNAL voted_serpentry : voted_serptype;
SIGNAL votedobne,voted ibnf : flow controltype;
SIGNAL voteddest_vid : vidtype;
SIGNAL votedclass : classtype;

SIGNAL start to check,checkdone : BOOLEAN;
SIGNAL obne_syndrome,ibnfsyndrome : presencetype;
SIGNAL clearobne,clearibnf : BOOLEAN :- FALSE;
SIGNAL currenttimervalue : timerrange;

-- These signals are "registers" for holding information

SIGNAL source-vid : vidtype;
SIGNAL presence : presence-type;
SIGNAL redunlevel : redun_leveltype;
SIGNAL timeoutvalue timeout_type;
SIGNAL vid is_simplex BOOLEAN;
SIGNAL is_flowcontrol BIT;

-- The following signals are used mainly by the controller. In this
-- ARCEITECTURE the controller is not a separate component. It seems
-- easier to debug, but it's slower to compile (where's my SPARC2, eh?)

TYPE by_array IS ARRAY (NATURAL RANGE <>) Or BIT_VECTOR(7 DORNTO 0);

SIGNAL vote-values : serparray (0 TO (maxredunlevel - 1));
SIGNAL bit votevalues : byarray (0 TO (max_redun-level - 1));

-- These signals will become ports when I get around to it

SIGNAL load timer : twlogic :- fl;
SIGNAL new-timer value : timerrange;

-- Here are the components used in the architecture

COMPONENT votingsubsystem

GENERIC

voter_delay: TIME :- 1 ns;
unan delay: TIME :- I ns;
syndrome delay: TIME :- 1 ns

PORT

175

is-flow-control: IN BIT;
presence : IN presence type;

redun level: IN redun level type;
unan: OUT BITVECTOR(7 DOWETO 0);
vote -result: OUT BITVECTOR(7 BONTO 0);
d: IN BITVECTOR(7 DONTO 0);
c: IN BITVECTOR(7 DONTO 0);
b: IN BITVECTOR(7 DONTO 0);
a: ZN BIT VECTOR(7 DONTO 0);
dsyndrome: OUT BIT_-VECTOR(7 DONTO 0);
csyndrome: OUT BIT_-VECTORC7 DONTO 0);
bsyndrome: OUT BIT_-VECTOR(7 DONTO 0);
a syndrome: OUT BITVECTOR(7 DONTO 0)

END COMPONENT;

COMPONENT timeout_subsystem

GENERIC

doCMTO: BOOLEAN :=FALSE

PORT

vid is simplex: IN BOOLEAN;
clear timeouts: IN BOOLEAN;
check done: OUT BOOLEAN;
ct -to -value: IN timeout type;
timer-value: OUT timer range;
load -timer: IN t_wlogic;
new -timer -value: IN timer_-range;
ibnf unan: IN BOOLEAN;
ibnf: IN flow_control _type;
ibnf syndrome_out: OUT presence type;
clear-ibnf: OUT BOOLEAN;
start to check: IN BOOLEAN;
obne syndrome-out: OUT presence type;
obne unan: IN BOOLEAN;
clear obne: OUT BOOLEAN;
obne: IN flow_control_type;
source -vid: IN vid_type;
clock: IN twlogic

END COMPONENT;

BEGIN

-controller PROCESS : implements the voter sub-controller. It reads in
-SERP -ntries using the pidto -vid-table, sends them to the voter,
-collects the syndromes, and writes the voted results to the voted
-- SERP mem ...

controller : PROCESS (clock, start_voting)

VARIABLE temp dpram_address : address type;
VARIABLE vids-voted : INTEGER :- 0;

VARIABLE current_ptov_entry : pid_to_vid_entry type;

-num-members is redun-level converted to a number, used as a loop control index

176

VARIABLE num-members :INTEGER;

-current-member is the index into the members array of the currentyptov entry

VARIABLE current-member :INTEGER;

DEGIN
IF clock - fl AND clock'EVENT TEEN

CJLSZ vote-state IS

-State rseO is the idle state

WNZN rseO -

done_voting <- FALSE;
ptov-rv <- zO;
dpram -rw <- zO;
dpram -address <- high zaddress;
voted serprw <- zO;
vids-voted :- 0;
vote_state <- rse0;
IF start_voting THEN

ptov-address <- vids voted;
ptov_ rw <- fl;

dpram-rw <- fl;
vote state <- rsel;

END Ir;

-States rsel to rse4 read in the ptov entry and then each SERP entry in
-- the VID
-Be careful of the array bounds since current member goes from 1 TO 4
-- while members type goes from. 0 TO 3.

-wait for the ptov data to appear

WRnW rsel -

vote-state <~= rse2;

WREN rse2 ->

current_ptov_entry :-ptov_data;
source-vid <- current ptov entry.vid;

num -members :- redun-to-mt (current ptov entry.redun level?;
timeout -value <- cur rent_ptov_entry. timeout;
presence <- current ptov -entry.presence;
vid_is simplex <- (current ptov entry.redun level - simplex);
current_member :- 0;
vote-state <- rse3;

-These next two states read each SERP entry in the VID into the
-- serp array

wREN rse3 ->

-Check to see if redun_level serp entries have been read

If NOT (current-member - num members) TEEN

177

-- if not, then go on to read the serp entry from the dpram

teinp dpram address :- serp_base +
current ptov_entry.members (current-member);

dpram_address <- temp_dpram address;
vote state <- rse4;

ELSE

-If so, then go on to the voting state

vote-state <- vO;
END XF;

-wait for the serp data to appear

WREN rse4 ->

vote-state <- rse5;

-rse5 simply assigns the serp data which appears on the data line to
-- vote-values

VEIN rse5 ->
vote-va lues (cur rent _member) <- serp data;
current-member :- current-member + 1;

vote-state <- rse3;

-End section to read in the serp entries

-vO sends the OBNE and IBNF bits to the voter. Notice that the OBNE and
-IBNF are the MSB and (MSB-il bits of the byte sent to the voter.
-NOTE :In the voter, ALL four entries are always converted and sent
-to the voter. The redun_level signal tells the voter which inputs
-- to ignore.

WREN vO
TOR i IN 1 TO max -redun-level LOOP
bit-vote-values Ci - 1) (obne-bit Pos) <-
convert _to bits(vote values(i - 1).obne);
bit-vote_values Ci - 1) Cibnf _bitypos) <-
convert _ to -bits (vote-values i - 1) .ibnf);

END LOOP;
vote-State <- vi;

-vi assigns the voted obne and ibnf "registers" there values, starts
-the timeout process, and sends the destination VID to the voter

WREN vi -

convert-back (voted-data (obne bitjpos) ,voted obne);
convert-back (voted-data (ibnf bitoC ,votod-ibnf);

-- Start timeout process

Start-to-check <- TRUE AFTER control_delay;

FOR i IN 1 TO max redunlevel LOOP
bit vote values(i-) <-

convertto bits(vote values(i - 1).destvid);
END LOOP;
vote-state <- v2;

-- v2 converts the voted destination VID back and decides whether to continue
-- voting based on the results of the timeout calculation.
-- NOTE : I'm assuming timeout calculations take only one clock cycle.
-- This is unrealistic, but for now it will do. Change the states around so

-- that whenever the timeouts are done, the voter decides whether to go on
-- voting or not.

WVIE v2 ->
convertback(voted data,voted dest vid);

-- IF (majority + timeout) TLEN continue voting ELSE stop
IF votedobne AND UOT(clearobne) TEEN

votestate <= v3; -- last state of the voter

ELSE
votestate <= v7;

END IF;

-- For now, don't vote the rest of the stuff

WEN v3 ->
votestate <= v7;

-- v7 assigns the intermediate values to the voted_serp-data port

WEN v7 =>

votedserp data.obne <- votedobne;
votedserpdata.ibnf <- votedibnf;
votedserpdata.vidissimplex <= vid issimplex;
votedserpdata.source_vid <= source vid;
votedserpdata.destvid <= voted dest vid;
votedserpdata.class <= voted class;
votedserpdata.obnesyndrome <= obnesyndrome;
voted serp data.ibnfsyndrome <- ibnf syndrome;
voted serpdata.sb_votesyndrome <- overall vote_syndrome;

votedserpaddress <- current-ptov entry.vid;
votedserprw <- fO AFTER control-delay;
vids-voted :- vidsvoted + 1;
vote state <- v8;

-- v9 checks to see if all vids have been voted. If so, then it signals that
-- voting is done and idles the voter subcontroller

WiN v8 -
votedserprw <- fl AFTER controldelay;
IF vids voted - num vids TEEN

donevoting <- TRUE;
votestate <- rseO;

ELSE

-- assert next ptov table address and start over

179

ptov address <- vids-voted;
vote-state <- rsel;

END 1V;

-Appease that damn syntax diety, again. He's a demanding bastage.

WREN OTEEZRS
ASSERT FALSE REPORT "PUKE"; -- SEVERITY ANNOYANCE;

END CASE;
END xr;

IND PROCESS;

voter :vot ing_subsy stem
PORT MAP

redun-level -> redun-level,
presence -> presence,

d -> bit vote values(3),
c -> bitvote values (2),
b ->bit vote values(l),
a ->bit vote values(O),

a -syndrome => a syndrome,
b_syndrome =bsyndrome,

c_syndrome ->c syndrome,
d_syndrome >dsyndrome,

vote -result -> voted-data,
is_ flow_control -> is_flow_control,

unan ->unan

timeout timeout subsystem
PORT MAP

ct-to-value -> timeout-value,
vid_is_simplex =>vid -is simplex,
clear-timeouts ->start _ clear,

load -timer ->load-timer,

new -timer-value -> new_timer_ value,
ibnf -unan -> convert-back(unan(ibnf_bit pos)),
ibnf - >voted-ibnf,'
ibnf syndrome_out -> ibnf-syndrome,
clear-ibnf -> clear_ibnf,
start _ to -check -> start-to-check,

check-done -> check-done,
obne -syndrome_out -> obne syndrome,
obne-unan ->convert -back(unan(obne_bit po8)),
clear obne ->clear obne,
obne '; voted obne,
source -vid -> source vid,

timer-value -> current-timer-value,
clock -> clock

END vote-timeout_struct;

-Voter and Timeout Structural Configuration

-This file contains the CONTXCURATION for the structural vote-timeout
-- implementation.

iSO

CONFIGURhTZON cvote-timeout_struct Or Vote-timeout 18

FOR vote timeout-struct

FOR timeout :timeout subsystem
u81 courzovUa!Zom work. ci imeout subsystem
QIWURIC MAP (doCMTO -> FALSE);
INC FOR;

FOR voter :vot ing subsy stem

081 CONYXGUA!ION voters. cvoting subsystem
GINIRIC MAP (voter -delay -> clock period/4,

syndrome delay -> clockcperiod/4,
unan delay -> clock period/4);

zNC FOR;

2ND FOR;

ZND cvote-timeout_struct;

181

10.7.2. Timeout Subsystem

LIBRARY score;

USE std.stdlogic.ALL;
USE score, scoreboard package .ALL;
US: std.std_cmos.ALL;
USE score .voterpackage.ALL;
USE score.address_package.ALL;
ENTITY timeout_subsystem IS

GEN ERIC

do CMTO: BOOLEAN :-FALSE

PORT

vid is simplex: IN BOOLEAN;
clear timeouts: IN BOOLEAN;
check-done: OUT BOOLEAN;
ct-to-value: IN timeout_type;
timer -value: OUT timer range;
load -time~r: IN t_wlogic;
new -timer-value: IN timer_range;
ibnf unan: IN BOOLEAN;
ibnf: IN flow-control type;
ibnf_syndrome_out: OUT presence_ type;
clear-ibnf: OUT BOOLEAN;
start -to-check: IN BOOLEAN;
obne-syndrome_out: OUT presence type;
obne unan: IN BOOLEAN;
clear-obne: OUT BOOLEAN;
obne: IN flow_control_typt-.
source-vid: IN vid type;

C lock: IN t_wlogic

END timeout subsystem;

LIBRARY SCORE;

USE std.std_logic.ALL;

ARCEITECTURE timeout subsystem Or timeout_subsystem IS

COMPONENT timer
PORT

clock: INF t-vloqic:
input value: IN timer_range;
timer -value: OUT timer_range;
load-timer: IN t-wlogic

END COMPONENT;
COMPONENT timeout checker

GENERIC

doCHTO: BOOLEAN :- FALSE;
simplex_is_special: BOOLEAN :- FALSE

PORT

Mg2

clock: IN t_wlogic;
flow -control -bit: IN flow control type;
clear_flow-control: OUT BOOLEAN;

unan: IN BOOLEAN;
syndrome_out: OUT presence-type;
start-to-check: IN BOOLEAN;
to-memory_rw: OUT t_wlogic;
timeout -value: IN0 timer -type;
timer -value: IN timer-range;
check done: OUT BOOLEAN;
ct-to-value: IN timeout -type;
vid is_simplex: IN BOOLEAN :-FALSE;
to address: OUT resolved -address;
clear timeouts: IN BOOLEAN;
timeout-out: OUT timer type

END COMPONENT;
COMPONENT timeout-memory

GENERIC

read_delay: TIME :- clock period/4

PORT

clock: IN twioqic;
address: IN resolved-address;
input: IN timer_type;
output: OUT timer type;
read-write: IN twlogic

END COMPONENT;

FOR scoreboard timer:timer
USE CONFIGURATION SCORE. ctimer behavior;

FOR obne to checker:timeout _checker
USE CONTIGURATION SCORE.Ctiseoiut-checker-tb,2havior
GENERIC MAP

do CMTO -> FALSE,
sim plex is special -> FALSE)

FOR ibnf -to -checker:timeout _checker
USE CONFIGURATION SCORE.ctimeout_checker-behavior
GENERIC MAP

do_-CMO -> FALSE,
simplex-is-special -> FALSE)

TOR obne -tomemory:timeout _memory
USE CONFIGURATION SCORE.ctimeout memory behavior
GENERIC MAP

read_delay -> clockyperiod/4)

FOR ibnf -tomemory:timeout_memory
USE CONFIGURATION SCORE.ctimeout mem ory behavior
GENERIC MAP

read delay -> clock period/4)
SIGNAL SGNLOO0021: t wlogic;
SIGNAL SGNLOO0051: timer type;
SIGNAL SGNLOO0057: timer-type;
SIGNAL SGNLOO0017: t wlogic;
SIGNAL SGNLOO0049: timer type;

SIGNAL SGNLOO0056: timer type;
SIGNAL feedbackO: timer-range;

B"GIN
timer-value <- feedbackO;

scoreboard-timer: timer
PORT MAP

load -timer ->load-timer,
timer-value ->feedbackO,

input_vralue ->new_timer-value,
clock -> clock);

obne -to -checker: timeout checker
PORT KAP

timeout_-out -> SGNLCOO0056,
clear-timeouts => clear-timeouts,
to-address -> OPZN,
vidis simplex -> vid_is_simplex,
ct -to value =ct-to-value,

check done =>OPEN,

timer value =>feedbackO,

timeout _value => SGNLOO0049,

to _memory_ rw => SGNLOO0017,
start _ to -check => start _to-check,
syndrome_out -> obne syndrome out,
unan -> obne unan,
clear -flow -control -> clear-obne,
flow -control _bit => obne,
clock => clock)

ibnf' to-checker: timeout checker

PORT MAP
timneout -out => SGN:LOOO57,
clear _timeouts => clear-timeouits,
to-address -> OPEN,

Vidis simplex => vid is_simplex,
ct-to-value -> ct _to-value,
check done =check done,

timer value =>feedbackfl.

timeout _value => SGNLOOOO51,
to_memory rw -> SGNLOO0021,

start _ to -check => start to check,
syndrome -out -> ibnf syndrome-out,
unan -> ibnf _unan,
clear _flow-control => clear_ ibnf,
flow -control _bit -> ibnf,
clock -> clock)

obne to_memory: timeout_memory
PORT MAPI

read -write -> SGNLOO0017,
output -> SGNLOO0049.

input -> SGNLOOOO56,
address -> source vid,
clock -> clock);

ibnf to_memory: timeout _memory
PORT MAP

read-write -> SGNLOO0021,
output -> SGNLOO0051,

input -> SGNLOO0O57,

184

address -> source vid,
clock -> clock)

END timeout subsystem;

-- Timeout Subsystem Structural Configuration

-This file contains the CONFIGURATION for the structural
t timeout_subsy stem implementation.

CONFIGURATION ct imeout_s ubsy stem OF timeout_subsystem I8

FOR t imeout-subsy stem

FOR scoreboard timer:timer
USX CONFIGURATION score. ctimer behavior;

END FOR;

FOR obne -to -checker:timeout _checker
USE CONFIGURATION score. ctimeout-checker-behavior

GENERIC KAP
doCMTO -> FALSE,
simplex is special => FALSE

END FOR;

-A simplex is treated differently for IBNF than for OBNE, so make the
-GENERIC the proper value

FOR ibnf to-checker:timeout _checker
USE CONFIGURATION score. ctimeout-checker-behavior

GENERIC MAP

doCMTO -> FALSE,
simplex is special -> TRUE

END FOR;

FOR obne -to_memory:timeout _memory
USE CONFIGURATION score. ctimeout-memory behavior

GENERIC KAP(

read -delay -> clock per iod/4)
END FOR;

FOR ibnf -to_memory:timeout _memory
USE CONFIGURATION score. ctimeout memory behavior

GENERIC MAP
read -delay -> clock period/4)

END FOR;

EUD FOR;

END ctimeout _subsystem;

10.7.3. Timeout Checker

LIBRARY score;

USE std.std logic.ALL;
USE score.scoreboard package.ALL;
USE std.stdcmos.ALL;
USE score.address package.ALL;
USE score.voterpackage.ALL;
ENTITY timeout checker IS

GENERIC

do CMTO: BOOLEAN :- FALSE;
simplexisspecial: BOOLEAN FALSE

);

PORT

timeout out: OUT timertype;
clear timeouts: IN BOOLEAN;
to address: OUT resolved address;
vid is simplex: IN BOOLEAN := FALSE;
ct to value: IN timeouttype;
checkdone: OUT BOOLEAN;
timervalue: IN timerrange;
timeoutvalue: IN timer type;
to_memory_rw: OUT t_wlogic;
start to check: IN BOOLEAN;
syndrome out: OUT presencetype;
unan: IN BOOLEAN;
clear flow control: OUT BOOLEAN;
flow-controlbit: IN flow controltype;
clock: IN twlogic

);

END timeoutchecker;

-- Timeout Checker Behavioral Architecture

-- This ARCEITECTURE contains the behavioral implementation of the
-- timeout checker. The generic doCMTO flags wehter to perform a
-- Common Mode Timeout. This feature is currently not implemented,
-- but the hook is there.
..

ARCRITECTURE timeoutcheckerbehavior OF timeout checker IS

TYPE checkerstate-type IS (cO,cl,c2,c3, c4);
SIGNAL checkerstate : checker_state_type :- cO;

SIGNAL difference : timerrange;

BEGIN

controller :PROCESS (clock,start to check)

BEGIN
IF clock - fl AND clock'EVENT TEEN
CASE checker-state IS

- • am, m m, mmmmmmmmlmmm m m mmmmmm m m m • mm

MEN co ->

1F start to check TEN
checker-state <- cl;

ELSE
checker state <- cO;

END IF;

WEN cl ->
IF (flow -control -bit AND DOT(unan)) OR vid -is_simplex TEED

difference <-~ abs(timer-value - timeout-value. value);
checker-state <- c2;

ELSE

-Place Common Mode Timeout code here

checker-state <- c4;
END IF;

WEER c2 ->

IF difference > ct-to-value TEED

-The timeout period has expired

clear -flow -control <- FALSE AFTER control-delay;
checker_state <- c3;

ELSE

clear -flow -control <= TRUE AFTER control-delay;
checker_state <- c4;

END IF;

WEN c3 ->

checker state <= c4;
KEEN c4 ->

check -done <- TRUE AFTER control-delay;
checker_state <- cO;

IND CASE;
END IF;

IND .2ROCISS;

END timeout _checker_behavior;

CONFIGUR.ATION ctimeout _ checker_behavior OF timeout-checker IS
FOR timeout _checker-behavior
IND FOR;

ED ctimeout checker_behavior;

10.7.4. Tineout Memory
LIBRARY score;

USE score.voter_package.ALL;
USE std.std_logic.ALL;
USE std.std-cmos.ALL;
USE score.addresspackage.ALL;
USE score. scoreboard package .ALL;
ENTITY timeout-memory IS

GENERIC

read-delay: TIME := clock period/4

PORT

read -write: IN t-wiogic;
output: OUT timer type;
input: IN timer type;
address: IN resolved-address;
clock: IN t-wloaic

END timeout-memory;

-Timeout Memory Behavioral ARCHITECTURE

-This file contains the behavioral ARCHITECTURE for the timeout
-- memory.

ARCHITECTURE timeout memory behavior OF timeout-memory IS

BEGIN

behavior : PROCESS (clock,read write,address)
VARIABLE memory : timeout_memory type(mem_base TO max-vid);

BEGIN
IF clock - fl AND clock'EVENT TEEN

If read write -tO TENM
memory(address) :- input;

ELSE
output <- memory (address) AFTER read delay;

END IF;
END IFr;

END PROCESS;
END;

CONFIGURATION ctimeout memory behavior oF timeout-memor' IS
FOR timeout memory b~ehavior
END FOR;

END ctimeout memory behavior;

10.7.5. Timer

LIBRARY score;

USE std.std-logic.ALL;
USE score. scoreboard package.ALL;
USE std.std cmos.ALL;
USE score.voter package.ALL;
ENTITY timer IS

PORT

load timer: IN t wlogic;
timer_value: OUT timerrange;
inputvalue: IN timerrange;
clock: IN t_wlogic

END timer;

-- Timer Behavioral Architecture

-- This ARCEITECTURE contains the behavioral implementation of the
-- scoreboard's internal timer. Ideally, a selected signal assignment
-- statement should be used. However, because the current version
-- does not support BUFTER ports, a PROCESS must be used instead.

ARCRITECTURE timer behavior OF timer IS

BEGIN

yo : PROCESS(clock)

-- this variable is required because the OUT port timer_value

-- cannot be read

VARIABLE temp_timervalue : timer range :- 0;

BEGIN

I? clock - fl AND clock'EVENT TEEN
IF NOT (temp_timervalue - maxtimervalue) TEEN

temp timervalue :- temptimer value + 1;
ELSE

temp timer value :- init timer value;
END IF;

IF load-timer - fl TEEN
temp_timervalue :- inputvalue;

END IF;

timer value <- temptimer value;
END IF;

END PROCESS;

INo

KUD timer-behavior;

CONFIGURATION ctimer behavior OF timer IS
FOR timer-behavior
KinD FOR;

KiND ctimer_behavior;

I19

10.7A6 Vot Sub"yutm

LIBRARY voters;

LIBRARY score;

USE std.stdlogic.ALL;
USX score, scoreboard pack age. ALL;
USX score. vot er pa ckage. ALL;
ENTITY voting subsystem IS

GENERIC

voter_delay: TIME :- I ns;
unan delay: TIME :- 1 ns;
syndrome delay: TIME :- 1 ns

PORT

presence: IN presence type;
dsyndrome: OUT BITVECTOR(7 DOWNTO 0);
csyndrome: OUT BITVECTOR(7 DONTO 0);
bsyndrome: OUT BITVECTOR(7 DONTO 0);
a syndrome: OUT BITVECTOR(7 DOWNTO 0);
is flow control: IN BIT;
redun-level: IN redun_level type;
unan: OUT BITVECTOR(7 DOIINTO 0);
vote -result: OUT BITVECTORC7 DOWNTO 0);
d: IN BITVECTORI7 DONTO 0);
C: IN BIT VECTOR(7 DOWUTO 0);
b: IN BITVECTOR(7 DOWETO 0);
a: IN BITVECTOR(7 DOWNTO 0)

END voting_subsystem;

LIBRARY VOTERS;

USE std.std -logic.ALL;
ARCEITECTURE voting subsystem or voting subsystem IS

COSIPONENT eight bit voter
GENERIC

voter delay: TIME :- I ns

PORT

is flow control: IU1 BIT;
result: OUT BITVECTOR(7 DOUNTO 0);

a : IN BITVECTOR(7 DOUNTO 0);
b: IN BITVECTOR(7 DONO 0);
c: IN BITVECTOR(7 DOUNTO 0);
d: IN BITVECTORC7 DONTO 0);
redun-level: IN redun_level type

END COIONNT;
COU1OUENT eight bit syndrome

GINERIC

191

syndrome delay: TIME :-1 ns

PORT

a: 1N BITVECTOR(1 DOWNTO 0);
b: IN BITVECTOR(7 DOWNTO 0);
c: IN BITVECTOR(? DOENTO 0);
d: IN BITVECTOR(7 DOWNTO 0);
&syndrome: OUT BITVECTOR(7 DOWNTO 0);
bsyndrome: OUT BITVECTOR(7 DOWNTO 0);
csyndrome: OUT BITVECTOR(7 DOUNTO 0);
dsyndrome: OUT BITVECTOR(7 DONTO 0);
vote-result: IN BITVECTOR(7 DOUNTO 0);
presence: IN presence type

END COMPORENT;
COMPONENT eight bit_unan

GENERIC

unan-delay: TIME :- 1 ns

PORT

a: IN BITVECTOR(7 DONTO 0);
b: IN BIT_VECT0R(7 DOWNTO 0);
c: IN BITVECTOR(7 DOENTO 0);
d: IN BITVECTOR(7 DONTO 0);
vote-result: IN BIT_VECTOR(7 DOWNTO 0);
unan: OUT BITVECTOR(7 DONTO 0);
redun_ level: IN redun_level_type

END COMPONZAT;

FOR voter: eight_bi t _voter
USE CONFIGURATION VOTERS. ctull-voter-behavior
GENERIC MAP

voter-delay =>1ns

FOR syn drome_qene rat or: eight _bit _ syndrome
USE CONFIGURATION VOTERS.cfull_syndrome behavior
GENERIC NAP

syndrome delay -> 1 ns

FOR unan qenerator:eight bit unan
USE CONFIGURATION VOTERS. ceight_bit_unan_behavior
GENERIC KAP

unan -delay -> 1 ns)

SIGNAL feedbacko: BIT_VECTOR(7 DONTO 0);

SEC13
vote result <- feedbackO;

voter: eight bit -voter
PORT NAPj

redun -level -> redun-level,
d -> d,
C -> C,

b b,

a ~)a,
result -> feedback0,

is-flow-control -> is-flow-control)

syndrome-generator: eight bit syndrome
PORT xAP

presence -> presence,
vote result -> feedbackO,
dsyndrome ->d_syndrome,
csyndrome c> c syndrome,
bsyndrome ->bayndrome,

asyndrome &- asyndrome,
d -> d,
C - C,

b ->b,

a ->a

unan generator: eight_bit-unan
PORT MAP

redun-level -> redun level,
unan -> unan.
vote-result -> feedbackO,
d -> d,
C) C,

b ->b,

a ->a

END voting subsystem;

CONFIGURATION cvoting subsystem OF voting subsystem IS

FOR vot ing subsy stem

TOR voter: eight_bi t_voter
USE CONFIGURATION work. cf ull-voter-behavior

GENERIC MAP

voter delay -> 1 ns)
END FOR;

FOR syndrome gene rat or: eight bits syndr ome
USE CONFIGURATION work. cfull syndrome_behavior

GENERIC NAP

syndrome delay -> 1 ns
END FOR;

FOR unan -generator:eight bit unan
USE CONFIGURATION work. ceight bit_unan_behavior

GENERIC NAP

unan_delay -> 1 ns)
END FOR;

END FOR;

END cvoting-subsystem;

193

10.7.7. Owe Bit Voter

LIBRARY voters;

LIBRARY score;

USE std.std_logic.ALL;
USE std.stdcmos.ALL;

USE score.scoreboard package.ALL;
ENTITY one-bit-voter IS

GENERIC

voterdelay: TIME :- 1 ns
);

PORT

is flow-control: IN BIT;
redun level: IN redun_level_type;
result: OUT BIT;
d: IN BIT;
c: IN BIT;

b: IN BIT;
a: IN BIT

END onebitvoter;

-- One Bit Voter Behavioral description
-- This file contains the behavioral description of a one bit voter.
~- It uses a selected signal assignment statement to vote based on
-- the redundancy level.
..

ARCHITECTURE one bit voter behavior OF one bit voter IS

BEGIN

voterprocess : PROCESS(ab,cd,redunlevelisflowcontrol)

VARIABLE flow_quad_resultdataquad_result : BIT :-0;
VARIABLE quad resulttriplex_result,simplexresult : BIT :- 101;

BEGIN

ASSERT NOT (redunlevel - zero)

REPORT "redun level in voter is zero!"
SEVERITY ERROR;

simplex_result :- a;

-- For triplex voting, the Id' input can be ignored since it will not have
-- valid data on it

triplex_result :- (a AND b) OR (a AND c) OR (b AND c);

flow_quad_result :-
(a AND b AND c) OR (a AND b AND d) OR
(a AND c AND d) OR (b AND c AND d);

94

data quad result
(a AND b) OR (a AND c) OR (a AND d) OR
(b AND c) OR (b AND d) OR (c AND d);

1F isnflow-control - 'V' THEN
quad result flow quad result;

ELSE
quad -result :-data quad result;

END IF;

CASE redun level IS
WHEN zero -> result <- '0 ATER voter delay;
WHEN simplex ->result <- simplex -result AFTER voter delay;
WEN triplex =>result <- triplex -result AFTER voter-delay;
WHEN quad -> result <- quad result ATER voter_delay;

END CASE;

END PROCZSS;

END one-bit _voter-behavior;

CONFIGURATION cone -bit -voter-behavior OF one-bit_voter IS
FOR one -bit-voter-behavior
END FOR;

END cone bit voter-behavior;

10.7.8. One Bit Unanimity Generator

LIBRARY score;

LIBRARY voters;

USE std.stdlogic.ALL;
USE std.std cmos.ALL;
USE score. scoreboardpackage.ALL;
USE score.voter package.ALL;
ENTITY onebitunan IS

GENERIC

unandelay: TIME :- 1 ns

PORT

redunlevel: IN redun_level_type;
vote result: IN BIT;
unan: OUT BIT;
d: IN BIT;
c: IN BIT;
b: IN BIT;
a: IN BIT

END one_bitunan;

-- One bit unanimity checker

-- This file contains the behavioral description of a single bit
-- unanimity checker.
..

ARCEITECTURE one bit-unan-behavior OF one bit unan IS

BEGIN

unanchecker: PROCESS (abcd,vote result,redun level)

VARIABLE quadresult,triplexresult,simplexresult : BOOLEAN : FALSE;

BEGIN

simplexresult :- TRUE;

triplex_result := (a - vote-result) AND
(b - vote result) AND
(c - voteresult);

quad_result :- (a - vcteresult) AND
(b - vote result) AND
(c - vote-result) AND
(d - vote result);

CASE redun level IS
WREN zero -> unan <- 01 AFTER unan delay;
WIMN simplex ->
unan <- converttobits(simplex_result) AFTER unandelay;

WRE triplex ->

I |96

unan <- convert_to_bits(triplex result) AI!KZR unan_delay;
VEN quad ->

unan <- convert_to bits (quad_result) LITER unan_delay;
END CASK;

IND PROCESS;

END one bit unan behavior;

cowrICURATION cone-bit_unan_behavior 0r one_bit-unan 1S
rc'R one -bit-unan-behavior
IND FOR;

END cone-bit-iinan-behavior;

10.7.9. One Bit Syndme gwmuao

LIBRARY score;

LIBRARY voters;

USE std.std_Iogic.ALL;
USX score.scoreboardpackage.ALL;
USE std.std_cmos.ALL;
USE score. voterpackage. ALL;
ENTITY one-bit_syndrome IS

GENERIC

syndrome delay: TIME :- 1 ns

PORT

presence: IN presence type;
vote-result, IN BIT;
dsyndrome: OUT BIT;
csyndrome: OUT BIT;
bsyndrome: OUT BIT;
asyndrome: OUT BIT;
d: IN BIT;
c: IN BIT;

b: IN BIT;
a: IN BIT

END one_bit _syndrome;

-One Bit Voter Behavioral description
-- This file contains the behavioral description of a one bit voter.

-It uses a selected signal assignment statement to vote based on
-- the redundancy level.

ARCEITECTURE one bit syndrome behavior 0F one bit syndrome IS

BEGIN

END one bit syndrome_behavior;

CONFIGURATION cone bit syndrome behavior OF one bit syndrome IS
FOR one-bit-syndrome-behavior
END FOR;

END cone-bit-syndrome behavior;

ILL.-

10.7.10. Eight Bit Voter

LIBRARY score;

LIBRARY voters;

USE std.std_logic.ALL;
USE score.scoreboard_package.ALL;
USE score.voterpackage.ALL;
USE std.std cmos.ALL;
ENTITY eightbitvoter IS

GENERIC

voter-delay: TIME :- 1 ns

PORT

redunlevel: IN redun_leveltype;
d: IN BIT_VECTOR(7 DOWNTO 0);
c: IN BIT_VECTOR(7 DOWNTO 0);

b: IN BITVECTOR(7 DOWNTO 0);
a: IN BIT_VECTOR(7 DOWNTO 0);
result: OUT BITVECTOR(7 DOWNTO 0);
is-flow-control: IN BIT

END eight bit voter;

-- Eight bit voter
-- This file contains the structural description for an eight bit
-- voter. A generate statement creates and maps the 8 one bit voters.
..

ARCHITECTURZ eightbit_voter_behavior OF eightbit_voter IS

COMPONENT one bit voter
PORT

is-flow-control: IN BIT;
redunlevel: IN redunleveltype;
result: OUT BIT;
d: IN BIT;
c: IN BIT;
b: IN BIT;
a: IN BIT

END COMPONENT;

BEGIN

votergen : FOR i IN result'RANGE GENERATE

slice : onebitvoter PORT MAP

is flow control -> isflowcontrol,
redunlevel -> redunlevel,
result -> result(i),
d -> d(i),
c => c(i),

ISe

b ->b(i),

a a aWi

END GENERATE voter_qen;

END eight-bit-voter behavior;

CONFIGURATION cfull_voter_behavior Or eight-bit-voter IS
FOR eight bit voter_behavior

FOR voter gen
FOR slice :one-bit-voter

USX LJONFICURATION voters.cone -bit_voter-behavior
OZNERIC MAP (voter-delay ->voter delay);

END FOR;
END FOR;

END FOR;
END cfull _voter-behavior;

10.7.11. Eight Bit Unanimity Generator

LIBRARY score;

LIBRARY voters;

USE std.stdloqic.ALL;
USZ score. scoreboard package .ALL;
ENTITY eight bit unan IS

GZNZRIC

unan delay: TIME 1ns

PORT

redun -level: IN redun level type;
unan: OUT 13ITVECTORC7 DOWW-TO, 0);
Vote -result: IN BITVECTOR(7 DOWETO 0);
d: IN BITVECTOR(7 DOWNTO 0);
c: IN BITVECTOR(7 DOWNTO 0);
b: IN BITVECTOR(7 DOWNTO 0);
a: In BITVECTOR(7 DOWNTO 0)

END eight bit unan;

-- Eight unar. checker
-This file contains the structural description for an eight bit
-- unanim~ity checker.

ARCHITECTURE eight bit unan behavior OF eight bit_unan IS

COMPONZNT one-bit-unan
PORT

redun -level: IN redun level type;
vote result: IN BIT;
unan: OUT BIT;
d: IN BIT;
c: IN BIT;
b: IN BIT;
a: IN BIT

END COMPONENT;

92GIN

unangqen : FOR i IN unan'RAIGZ GENERATE

slice :One-bit-unan PORT MAP

vote-result -> vote result~i),
redun-level -> redun-level,
unan -> unan~i),
d)dci) ,
c c> W i)
b ->bli),

a -)a~i)

201

END GKNERA!E unangqen;

END eight_bit-unan-behavior;

CONFIGURATION ceight bit_unan_behavior OF eight bit unaj, IS
FOR eight bit-unan-behavior

TOR unan-gen
FOR slice :one bit unan

usE COwFIGUmAixON- voters.cone-bit -unan -behavior
GENERIC MAP (unan-delay -> unan-delay);

END FOR;
END FOR;

END FOR;
END ceight_bit-unan-behavior;

10.7.12. Eigt Bit Syndrome Acumulator

LIBRAR!Y score;

LIBRARY voters;

USE std.std logic.&LL;

USE score. scoreboard package.ALL;
USE std.std cmos.ALL;
USE score.voterpackage.ALL;
ENTITY eight bit_syndrome IS

GENERIC

syndrome-delay: TIME :- 1 ns

PORT

presence: IN presencetype;
vote-result: IN BIT_VECTOR(7 DOWNTO 0);

dsyndrome: OUT BIT_VECTOR(7 DOWNTO 0);
csyndrome: OUT BIT_VECTOR(7 DOWNTO 0);

bsyndrome: OUT BIT_VECTOR(7 DOWNTO 0);

asyndrome: OUT BITVECTOR(7 DOWNTO 0);

d: IN BITVECTOR(7 DOWNTO 0);

c: IN BITVECTOR(7 DOWNTO 0);

b: IN BITVECTOR(7 DOWNTO 0);

a: IN BITVECTOR(7 DOWNTO 0)

END eightbit syndrome;

-- Eight bit syndrome
-- This file contains the structural description for an eight bit

-- syndrome. A generate statement creates and maps the 8 one bit syndromes.
..

ARCEITZCTURE eight bitsyndromebehavior OF eight_bit_syndrome IS

COMPONENT one bit syndrome
PORT

presence: IN presence_type;
vote result: IN BIT;

dsyndrome: OUT BIT;
csyndrome: OUT BIT;
bsyndrome: OUT BIT;

asyndrome: OUT BIT;
d: IN BIT;
c: IN BIT;
b: IN BIT;
a: IN BIT

END COMPONENT;

syndromeqen : FOR i IN vote_result 'RANGE GENERATE

slice : one bitsyndrome PORT MAP

2w8

presence -> presence,
vote result -> vote resuit(i),
dsyndrome ->dsyndrore(i),

cayndrome -> syndrome Ci),
bayndrome ->bsyndrome(i),

asyndrome ->asyndrome(i),

d -~d(i) ,
C c M ci,
b b b(i) ,
a a M~i

RED GENERATE syndrome gen;

END eight bit syndrome-behavior;

CONFIGURATION cfuii_syndrome behavior OF eight bit syndrome IS
FOR eight bit syndrome_behavior

FOR syndrome gen
FOR slice :one-bit syndrome

USE CONFIGURATION voters.cone-bit syndrome_behavior
GENERIC NAP (syndrome delay ->syndrome-delay);

END FOR;
END FOR;

END FOR;

END cfuii syndrome behavior;

10.8 C Test Vector Genrator

This appendix contains the complete C source code for the scoreboard test vector

generator.

10.8.1. Mie config~h

This file contains global configuration information such as the location within the

SERP of the OBNE and IBNF bits.

/* Define configuration information
/changing these defines will change such things as where the obne ~

/* bit is located and how many bytes per serp entry

/* bytes per entry in the voted_serp array ~
/* changing this also requires that the write_result procedure be *
/* changed as well (it's in the vote.c source file *
#define VS 7
/* these definitions all affect the voted serp array. Be careful'!!~
#define VS-to_ b c 0
#define VS-obne-lbc 1
#define VS ibnf lbc 1
#define VS class lbc 1
#define VS dvid loc 2
#define VS-obne-syn_boc 3
#define VS-ibnfsyn_boc 4
#define VS-timer -blc 5
#define VS-imit-timer-lbc 6
#define VS processed_bit_boc I

/* define masks for the voted serp array ~
#define VS obne-mask 0x80
#define VS ibnf mask 0x40
#define VS class mask Oxif
#define VS-obne-syn_mask OxOf
#define VS-ibnfsyn_mask OxOf
#define VS processed-bit-mask 0x20

/* These #defines correspond to the locations of all the bytes in
1* the SERP and CT
/* NOTE that the first entry is numbered 0

/* CT related locations */
#define BytesyperCT entry 8
#define Redun loc 1
#define Presence lbc 1
#define Dasep~eboc 2 /* location of the first PE in a CT entry '

#define To-lbc 6

I' SERP related locations/
#define Bytes_per_SERP entry 4
#define Dvid loc I
#define Obne_1cc 0
#define Ibnf loc 0
*define Class_1cc 0

/* System configuration definitions/
#define Max redun-level 4
#define Mum-ne 5
#define Peperne 8
#define Num-vids 256
#define Max-vid 254

/* These masks correspond to the location within a byte. They don't
/* need to be changed unless the bit locations are changed. '

#define obne-mask OxBO
#define ibnf mask 0x40
#define class-mask Oxif
#define redun-level mask 0x7
#define presence shift 3
#define ne mask OxO7;
#define pe-shift 3

/~End configuration information ~

/ *******************t*****************M6***

10.8.2. File sbdefsh

This file contains global definitions and variables.

/* Scoreboard simulation program
by
Dennis Morton
3 Jan 1991

revision 2.2 (everything parameterized, file output added)
*/

#include "config.h"

/* This header contains globals used by the simulation
/ ***************.***.********t***t***tt*tt***********/

#define True 1
#define False 0
#define Prob fault 1

typedef int Boolean;
typedef int Byte;
typedef int Bit;
typedef Byte Serp_type[Pe per ne Numne BytesperSERPentry];

struct messagestruct

Byte source vid;
Byte destvid;
Byte sources[Maxredun level];
Byte dests(Max redun_level];
Byte obne to;
Byte ibnfto;
Byte timer value;
Byte itv; /* initial timer value */
Byte ex class;
Byte timestamp;
Byte vote mask;
Byte size;

/* this structure is used to generate serps. serpstodo tells */
/* how many times to include that entry as a potential message
/* in the serp. serpsdone tells how many serps have been sent */
/* with that entry. When these two become equal, source vid is *1
/* added to the free sources array. On the next serp, new */
/. parameters will be generated for sourcevid. '/

struct serp sourcestruct

Byte source vid;
Byte dest vid;
/* rd - source redundancy level, drd " destination redun level "1
Byte srd;
Byte drd;
Byte obne to;
Byte ibnf to;

2G7

Byte to value;
int serpsdone;
gserpsource[Num_vids];

/* correct message array */
struct messagestruct gcmessage[Pe_perne * Numne];

/* messages found by simulation */
struct message struct gmessage(Pe per ne * Numne];

Serptype serp;
Byte gvotedserp[Numvids * VS];

/* define lookup tables used by the various modules /

int to[Num_vids];
Byte ct[Num_vids * Bytesper CT entry];
Byte gvidsused[Num vids];
Byte ptov_table[Pe perne * Num_ne * Bytes_per SERP entry];
Boolean gfreesources[Numvids];
Boolean gfreedests[Num Vids];***

/* to clock is an integer which emulates a clock */
int to clock;

/I num vids contains the number of defined vids currently in the ct */
int gnumvids;

/* this variable controls the verbosity of the output */
/I 1 - keep it simple */

/* 2 = intermediate but useful for bugs */

/* 3 = inundate me with info */
int debuglevel;

/* This flag decides whether to generate faults or not "/
Boolean generatefaults;

/* This variable determines how many total rounds to perform */

int num rounds;

/* this array is used to generate the presence bits */
Byte gpmasks[Maxredunlevel];

This file contains functions to generate and check the CT.

#include "sbdefs.h.

/ ******************file ct .c

" This file contains the source code which generates and checks
" the configuration table. It also clears all the important
" variables and arrays.

/*' These numbers affect how likely each redun level will be
/* generated
#define Prob simplex 5
#define Prob triplex 11

/ * **** * ~ ~ ~ get table ***********t*

" get table generates the PID to VID translation table used to
" feed the voter one VID at a time*

void get table()

int i,J,serp_place:

Byte redun -level;
/* calculate the pid to vid translation table which will allow *

/ the voter to be fed one vid at a time *

serp place - 0;
for(i - 0; i <~= (gnum-vids - 1,'; 1441,

redun_level - ct(gvidsusedfil
Bytes perCT entry Redun_boc] & redun-level mask;

ptov-t able(serp place I = redun level;
serp place += 1;
for(j - 0; j <- (redun_level-l); j++)

ptovt table(serp place] - unpack(ct[gvids -usedi]
Bytes perCT entry +
Base_peloc + J)

serp place **= 1;

/ ***** *** ** * ** *** * ***check ct ** **

*ensures that a single pa is not a member of more than 1 VID *

void check-ct()

mnt i~j,vid_loc,redur,_level,ne,pe,numberpes;
mnt rl,r2,r3,r4,r5; /* redundancy level counters ~
mnt upe[Pe_per_ne * Num_ne); /* pe's used in a VID *

ri - 0;
r2 - 0;

r3- 0;
r4 - 0;
r5 - 0;

for (1 - 0; 1 <- (Pe per fie *Num-ne -);i++)

upel] - 0;

for (i - 0; 1 < gnum_vids; i++)

vid_1cc - qvids -used(il * Byte s pe rCT eit ry;
redun -level - ct[vid_1cc + Redun-icc) & redun_level-mask;
switch Credun-level)

case 1: printf("\nvid %i is a simplex\n",ct[vidIc]);
ri +- 1;
break;

case 2: print f (\nWIARNING 1 vid %i is a duplex\n",ctivid-loc]);
r2 +- 1;
break;

case 3: printf(-\nvid %i is a triplex\n",ct(vid_1cc]);
r3 +- 1;
break;

case 4: printf(-\nvid %i is a quad\n",ctfvidIc]);
r4 += 1;
break;

case 5: printf("\nvid %i is a quint\n",ct~vidloc]);
r5 +- 1;

break;

for (j = 0; j <- (redun_ level-i); J-+)

ne = ct[vid_icc - Base_pe_icc + ne -mask;
pe - ct~vid 1cc + Base pe icc + J) >> peshift;
printf("member %.;: ne - ti, pe = %i\n",j,ne,pe);
if (upe((ne *Peperne) + pel)
printf ("WARNING!'! ne =%i pe - %i used more than once in ct\n"

,ne, pe);
else upel(ne *Pe per ne) - pe)

number_pes - (r5 *5) + (r4 4) + (r3 *3) + (r2 * 2) + rl;
if (number pes > (Peperne Nw,,_ne))

print f ("WARNING! ! Used too many pe's\n\n");

printf("\nThe redundant groups broke down like so:\n");
printf(" simplex - %i\n",rl);
printf(" duplex - %~"r)
printf(" triplex - %i\n",r3);
printf)" quad - i\n"',r4);
printf(" quint - %i\n\n",r5);

/ ***t~***t************t* et ct

* generates a new ci when called

void calculate-ct()

irt i,j,place.startingplace,num_- entries_fcund,ctentry[5];
int ne,pe,desired-redun, redun_level, presence;
int remainingpes,usedpes(Peperne * Num-ne];
Byte vid;
Boolean vid-filled, able-to_ fill_vid, got avid,once-around;

for (1 =0; 1 <- (Peperne *Num_ne - 1.); i4+)

210

used pes(i] - 0;
remaining pes - Peperne *Numne;

place -0;

while '(remaining pes -- 0))

desired-redun - random() & Oxf;
if (desired -redun <- Prob-simplex)
desired redun - 1;

else if (desired redun <- Prob triplex)
desired-redun - 3;

else
desired-redun - 4;

if (desired -redun > Max_redun-level)
desired-redun - Max-redun_level;

vid filled - False;
able-to-fill-vid - True;
once-around - False;
num-entries-found - 0;
starting place - place;
while (! (vid-filled) L& able-to_ fill-vid)

if (used_pes~placej -- 0)

ct _entry[num_entries _found) - place;
nun,_entries_ found += 1;
/* skip to next NE */

place - ((place / Pe-per_ne) + 1) * Peperne;

else place +- 1;

if (place > (Pe_per_ne *Num_ne))

place - 0;
once-around = True;

if (once-around £~(place >= starting place))
able to_ fill vid False;
if (num-entries found =- desired-redun)
vid filled - True;

if (vid-filled)

1* Find a vid number for the new virtual group *
gota_vid - False;
while (!(got_a_vid))

vid -random() & Oxff;
if U(vid_ found (vid)) ~(vid <- Max-vid)

got_a_vid - True;

presence - 0;
ct~vid *Byte s_pe r_CT_ent ry + Redun -blc) -desired-redun;

for (i1 0; 1 <- (desired-redun - 1); i++)

/* this fashions the proper number of presence bits *

presence I- gpmasks[i];
ne - ctentryfi] / Peper_ne;
pe - ctentryi] % Pe_per_ne;
ct~vid *Bytes_per_CT_entry + i + Basepeloc) pack(ne,pe);
used_pes [ct_entrytiJ] -1

ct~vid * Bytes perCT entry + Presence boc] I-
(presence << presence shift);

211

/* set a timeout value for the vid h

ctivid *BytesyerCT entry + To-loc) random() Oxff;
gvidsused[gnum -vids] vid;
qnum-vids +- 1;
remainingpes -- desired redun;

*hh*ettetc***te ~h~hh it _arrays C* ** e~*eeh~eee**

this routine clears the vids used array~the ct, and the gnum-vids

* variable.*

void init_arrays()

mnt i,vid;

gpmasks[O] - 1;
for (i - 1; 1 <- (Max redun level - 1); 14+)

gpmasks[i] - gpmasks[i - 1] * 2;

for (i - 0; 1 <- (Pe per_ne * Num-ne * BytesyperSERP entry -1); 1++)
ptov_table~i] - -1;

for (vid =0; vid <- (NumVids -1); vid++)
ct~vid Bytes perCT entry) =vid;

for (i -0; i <= (Num-vids -);i++)

gvjds_usedi - -1;
gfree_sources[i] - True;
gfree_dests~i] - True;

9num-vids - 0;

/* Clear-voted serp
/* This function clears the processed bits in the voted serp
/* array.

void clear-voted_serp 0I

int i;

for (i - 0; 1 <- gnumvids; i++)
gvotedserplgvidsused[i] * VS + VS processed-bit_locJ

VS-processed-bit-mask;

2n2

10.8.4. File nf~uerp~c

This file contains functions to generate a SERP which does not contain any faults.

#include "sbdefs.h"

I ~ ~ ~~ set bytes ****************

" this function sets the dest-vid field of avid to dvid, the
" ibnf bits of svid, and the obne bits of dvid. It then

" builds a reference message for error checking.

void nf Tset -bytes (svid, dvid, num-mes sages)
Byte svid,dvid;
int *num-messages;

Byte ex_class - 1;
Byte source_presence,dest presence;
mnt i,redun_level,pe;

/* set to,dest buffer, obne, exchange class, and dest vid for source1
redun -level - ct(svid *Bytes per_ CT entry + Redun-loc]

& redun level mask;
for (i - 0; i <- (redun_ level - 1) ; i++)

pe - unpack(ct[svid * Bytes perCT -entry + Baseype_1cc + i)

serp((pe * Byte s pe r_S ERP_ent ry) + Obne-lbc] I- obne-mask;
serp[(pe * Byte s pe r_S ERP_ent ry) + Class_1cc) I- ex-class;
serp] (pe *Byte s pe r_SERP_e nt ry) + Dvid 1cc] - dvid;

/* set ibnf for destination *

redun -level - ct[dvid * Byte s pe rCT ent ry + Redun-loc]
& redun level mask;

for (i - 0; i <- (redun-level - 1) ; i++)

pe - unpack(ct~dvid * Bytes perCT -entry + Base pe_1cc 4 i]);
serp[(pe * Byte s pe r_S ERP_ent ry) + Ibnf-loc] I- ibnf-mask;

source presence - ct[svid * Bytes perCT entry + Presence_1c]
>> presence-shift;

dest presence - ct[dvid * Byte s_pe r_CT_ent ry + Presence_1cc]
>> presence-shift;

set message (num messages, svid,dvid,ex_class, source_presence,
dest presence);

~~~ g~enerate_nf_serp * ****** **

" generates a new no-fault serp by randomly sending messages *
" becween VID's. It also builds the correct-message structure *

void generaten fserp (n umme ssages)
int *num-messages;

mnt i,vids_left,potsvid,potdvid;
mnt used-sources!Num-vids],used-dest[Num-vids];

*num -messages - 0;
vids-left - gnumvids;

213



/* initialize serp to 0 */
for (i -0; 1 <- (Peper-ne *Num-ne *BytesperSERP entry -1); 1++)

serp(i] - 0;

/* initialize "used" array's to zero ~
for (i - 0; 1 <- (Num-vids - 1); 1 )

used sources Ci] - 0;
used-destli] - 0;

while (Mall done))

while (!(got_source))

/* generate a random VID from 0 to 255 *

/* pot svid - potential source vid
pot svid - random() & Oxff;

if (vid -found(potsvid))
if ('used_sourcesfpotsvidl))

/* source VID found, invalidate this VID as a potential source *

used-sources[potsvid] -1;
got source -True;

while (!(got _destfl

/* pot dvid - potential destination vid ~
pot dvid - random() 4 Oxff;
if (vid -found(potdvid))
if (!'(used dest [pot-dvid])

/* invalidate this VID as a potential dest *
used-dest~potdvid] - 1;
got dest - True;

4nf_set_bytes (pot _svi d, pot dvid, num_mes sages);
*num-messages +- 1
vids-left -- 2;

if (vids left < 2)
all-done - True;

got_source - False;
got dest - False;

214



10.8.5. File serp.c

This file contains functions to generate a SERP which contains faults embedded in

it. This version does not work correctly.

#include "sbdefs.h"
int num faults;

/5*~* *tt****tt*************t~ettt**t**t*tttt*****************t** */

****.************ *** file serp.c *
* This file containd the source code which generates the serp. It *

* updates the serp source array, and then it creates a SERP from *
" that array.

/**********5*t*Qi**t*5**5*5**********t*tt*tt*************t*t/

/5*ttttt*t *tttt * tttt~ tt* pack **s**s* tttt5*t*5*5*t*tttt5*t*

* pack converts an (ne,pe) pair into its corresponding byte
* representation in the ct. *

Byte pack(ne,pe)
int ne,pe;

return((pe << peshift) I ne);

/****************** unpack *** ********* ** ******
* this function "unpacks" the physical pe number encoded in *
* the ct. *

Byte unpack (ct entry)
Byte ct entry;

int pe,ne, serploc;

ne - ct entry & nemask; /* ne number is last three bits */
pe - ct_entry >> pe-shift; /* shift out ne number for pe number

serp-loc - (ne * Peperne) + pe;

return(serp_loc);

/ *****,******.** **** vid found ********************

* this function searches the vids used array for the vid it *

* it is passed. *
*i*s**t *****t *t*stt*t**, t*, s*st*ts***ss*t**tt*t~tt

Boolean vid found(vid)
Byte vid;

int i;
Boolean found = False;

for (i - 0; i <- (gnumvids - 1); i++)
if (Vid -- gvidsused[i])

found - True;

215



return (found);

~~ set_message
- sets the correct message information in the cmessage
* array. This is the information which the scoreboard must
* provide after it has processed the serp.

void set mes sage (num_mes sages, svid, dvid, ex_clas s, obne syndrome.
ibnf syndrome)

int *num -messages;
Byte svid,dvid~ex-class,obne syndrome, ibnf syndrome;

mnt i,redun-level;
struct message struct '5;

s - 4(gcmessagel'num-messages]);

s->source vid - svid;
s->dest-vid -dvid;
s->ex-class - ex-class;
s->obne -to - obne syndrome;
s->ibnf-to - ibnf syndrome;

for (1 - 0; i <- (Max_redun _level - 1); i+)

s->sources[i] - 0;
s->dests(i] 0;

/* set sources array to pe's in source vid/
red~n _ level - ct[svid * Bytes perCT entry + Redun_1c]

& redun level mask;
for (i - 0; i <- (redun level -1); i++)

s->sources[i] - ct~svid * Bytes_perCT entry + Base_pc lot + i];

/* set dests array to pe's in destination vid '
redun_- level -ctidvid * Bytes perCT entry + Redun_1c]

& redun_ level mask;
for Ci - 0; 1 <- (redun-level - 1) ; i++)

S->dests Iil - ct(dvid * Bytes_per_CT_entry + Basepe_loc + i);

/ ********* ...* set bytes
" this function sets the dest vid field of svid to dvid, the
" ibnf bits of svid, and the obne bits of dvid. It then builds
" a reference message for error checking.

void set bytes(svid,dvid,obne,ibnf,ex cl iss)
Byte svid,dvid;
Bit obne(Max -redun-level].ibnf(Max-redun level];
Byte ex-class;

int i,redun-level,pe;

/* set to,dest buffer. obne,e*xchanqe class, and dest vid for source '
redun -level - ct(svid * Bytes perCT entry + Redun-loc]

& redun level mask;
for Ci - 0; 1 <- (redun-level - 1) ; i4+)

pe - unpack(ct[svid * Byte s pe rCT ent ry + Base pec bc + il);
serpjpe *BytesyperSERP entry) + Obne -lc) I- obne~i];
nerpC(pe * Byte syerSERP ent ry) + Class boc) I- ex-class;

216



serp[ (pe * Bytes_perSERP entry) + Dvid-loc! - dvid;

/* set ibnf for destination *

redun -level - ct~dvid * Bytes perCT entry + Redun_loc]
A redun level mask;

for (i = 0; 1 <- (redun_level - 1) ; i++)

pe = unpack(ct~dvid Byte s pe rCT ent ry + Basepeiloc + ifl;
serp[(pe * Bytes per SERP entry) + Ibnf loc] I- ibnfli];

/ ********e*******generate serp ***********

* this function actually produces the serp based on the
* info contained in the serp source array

void gene rate serp (num me ssages)
int *num messages;

struct serp_source_struct *s;

mnt i,j,redun-level;
Boolean obne -unan,ibnf-unan~message_to_send;
Byte obne[Max-redun-level),ibnf (Max redun_level];
Byte ex_class - 3;

/* masks array is used to mask out all but one bit cf the obne/
/* and ibnf timeouts/

*num messages - 0;
for (i - 0; 1 <- Cgnum-vids -1;i++)

s - &gserp-source[i];
obne unan - True;
ibnf-unan - True;
message to_send - False;

redun level - s->srd;
for (j - 0; j <- (redun level - 1) ; J++)

if (((s->obne -to) & gpmasks[j]) > 0)
obne[j) - obne_mask;
else

obne[j] - 0;
obne-unan - False;

redun level - s->drd;
for (j-0; J - (redun-level - 1) ; J++)

if (((a->ibnf -to) & gpmasks[j)) > 0)
ibnf(J] - ibnf-mask;
else

ibnt~jj - 0;
ibnf-unan - False;

message to send - obne_unan 44 ibnf-unan;

set bytes (s-source_vid, s->dest vid,obne,ibnf,ex-class);

217



/* increment serps done variable *

s->serps done +- 1;

if (message to-send)

set_message(num-messages, s->source-vid,s->dest-vid,ex-class,
s->obne_to,s->ibnf-to);

*num-messages +- 1;
gfreesources[s->source -vid] - True;
gfree-deststs->dest-vid] - True;

1* * ***** S *5** * *get fault
" get fault decides which member of a vid is too be faulty
"and generates the proper timeout syndrome.

void get_flow_control (vid, redun-level, fault, syndrome)
Byte vid,redun level;
Boolean *fault;
Byte *syndrome;

int i, rnumber, faultype, position, non-faulty_syndrorne;
Boolean inject fault - False;

/* create the default syndrome S
*syndrome - 0;

for Ci - 0; 1 <- (redun_level - 1) ; i++)
*syndrome I- gpmasksi;

/* determines whether to inject a fault or not
rnumber - random() & Oxf;
if (rnumber <- Prob_ fault)

inject _fault - True;

/* make sure only one fault per message *
if (inject fault 6 !(*fault))

if (debug level >= 3)
printf("NOTICE! Fault injected in vid ti\n",vid);

*fault - True;
num faults +- 1;
switch (redun-level)

case 1: faultype - 1;
break;

case 3:
faultype - random() & 0x03;
if C (faultype -- 3) 11 (faultype -- 0)) faultype -4;

break;

case 4:
faulty-pe - random() A 0x03;
if (faulty pe -- 0) faultype - 1;
else if (faultype 1) faultyye - 2;
else if (faulty-pe -- 2) faultype - 4;
else if (faultyype -- 3) taultype - S
break;

/set the faulty pe's presence bit to zero '



*syndrome ^-faulty pe;

/ *** **** ** ~ set serp source enktry **~***** *****

" this function creates an entry in the serp source array
" for the source -vid it is passed.

void set -serp source entry (source_vid dest-vid, location)
Byte sour ce_vid, dest_vid;
int location;

struct serp source struct *s;
Boolean *fault - False;

s - figserpsource (location);
s-)source vid - source vid;
s->dest vid - dest vid;
s->srd - ct[source_vid * Bytes_.per_CT_entry 4 Redun_loc]

& redun level mask;
s->drd - ct~dest -vid * Byte s_pe r_CT_ent ry + Redun-loc]

& redun-level-mask;

get-flow-control(source_vid,s->srci,&fault,S(s->obne -to));
get _flow_control(dest _vid,s->drd,tfault,&(s->ibnf-to));

s->Serps-done - 0;

*generate_ serp_ source *****55i**

" generates a new serp by randomly sending messages between
" VID's. It builds the correct message-structure too.

void gjenerate serp source))

Boolean got_source~got_dest,all done;
mnt i, source-vid, dest_vid, potdvid, place;

got source - False;
got dest- False;
all done - False;
place - 0;

num faults - 0;

/* initialize serp to 0 *
for (i - 0; 1 <- (Pe_per_ne *Num-ne *Byte s per_SERP_ent ry); i++)

serpli] - 0;

while (! (all-done))

while (1 (got_source))

if (gfree_sources [gvids usedlplace]])

source vid - qvids_used [place);
qfree_sources(source_vid] - False;
got source -True;

else place *-1;

if (place -=gnum-vids)

got_source -True;

219



all-done = True;

while (!(gotdest) && !(alldone))

potdvid - random() & Oxff;
if (vidfound(pot dvid))
if (gfree-dests[pot dvid])

dest vid - potdvid;
gfreedests[dest vid - False;

got dest - True:

if (!(alldone))
set_serp_source_entry(sourceviddest_vid,place);

gotsource - False;
gotdest - False;

. .********** * get_ serp *******
* generates a new serp when called *

void get serp (nummessages)

int *num messages;

static Boolean generate_ct = True;

if (generate ct) /* generate a new ct? */

initarrays)):

calculate ct ();
gettableo(;
generatect = False;
if (debuglevel >= 1)

check ct);

if (generatefaults)

generateserp_source));

if (debuglevel >- 1)
printf("\nNOTICE! number of faults - %i\n",num faults);

generate_Serp(num_messages);

else

generatenfserp(num_messages);

2W0



10.8A6 Fil voteac

This file contains finctions to vote the SERP to arrive at correct messages. It is very

similar to the code in Appendix 10.2.

#include "sbdefs.h n

#include <math.h>

/ ~ file vote.c
" This file contains the source code for voting the SERP, keeping*
"track of timeouts, and writing the results into voted serp.

/ ~vote is a generic vote function which will vote up to 5 *
/* items passed to it. It returns three flags and the result.
/* The simplex flag signals that the presence bits indicate a ~
/* simplex configuration. *

Byte vote (Vote_valuesredun-levelunan)
Byte vote values[Max-redun-level];
int redun _level;
Bit *unan;

Byte a,b~c~d;
Byte result,int -reslint _res2; /* mt-intermediate *
Boolean ABBC,CD;

a - vote values[O);
b -vote values~l];
c - vote-values [2];
d - vote-values[3];

AB - (a - b) ? True False; /* used for flags ~
BC -(b - c) ? True False;
CD - (c -= d) ? True :False;

switch (redun-level)

case 4:
*unan - (AB 44 BC 44 CD) ? True :False;
result -(afibfc) I (afic~d) I (bscsd) I(a&b&d);
break;

case 3:
*Unan - (AB 55 BC) ? True :False;
result -(a & b) I (b & c) (a & c);
break;

case 2:
printf("ERROR! Voted a duplex\n");
break;

case 1:
*unan -True;
result -a;

break;

return(result);

/* end vote ~

/ ** *. ***.**** ** *.* ** **.**221*



/* read timer reads and returns the current timer value. 0/

int read-timer ()

return (toclock);

/0 check-to checks to see if the timeout value (to value) has been "/
/, reached. If it has, then it returns a true value for toreached. 0/

Boolean checkto (vid,to_valuetimervalueinit timervalue)
Byte vid, to value,*timer value,*init_timervalue;

Boolean to-reached - False;

*timer "slue - read timero;
if (tolvid] -- 0)

tolvid] - *timervalue; /* TO set? then set a timeout 0/

else if ((timervalue - to[vid)) > tovalue)

printf("NOTICE! timeout for vid %i reached\n",vid);
to reached = True;
Sinit timer value = to[vid];

to[vid) = C;

return (to_reached);

/* end checkto 0/

/0 fc vote performs the flow control vote function (i.e. OBNE 0/

/* and IBNF). If a timeout is reached, it clears that pe's syndrome 0/

/0 bit and sets the result to true (ibnf or obne). /

void fc vote (vid,vote valuesredun level,to value, result,fault,
syndrome,timer value,init timervalue)

Byte vid,votevalues[Maxredunlevell;
int redun level;
Byte to value, *result;
Boolean *fault;
Byte *syndrome,0timervalue,'inittimer_value;

Boolean unan;
int i;
Byte oldresult;

*result - vote (vote_values,redunlevel,&unan);

/* set default syndrome 0/

*syndrome - 0;

for (i - 0; i <- (redunlevel - 1); i+)
*syndrome I- gpmasks[i];

if ('(unan) 66 (*result !- 0)) /* check for timeouts 0/

old result - *result;
*result - 0;

*fault - checkto (vid,tovalue,timervalue,init_timervalue);
if (*fault)



/* reset obne (or ibnf) bit and zero proper presence bit *
*result - old-result;

/* clear the offending pe's syndrome bit *

for (U - 0; i <- (redun level - 1); 1++)
if (vote valuestl !- *result)

*syndrome ^- pmasks[i];

else /* check for illegal transitions ~

/* to be determined *

/* end fc-vote

/* vote other is the function which votes the destination '
/* VID and exchange class fields of the SERP.

void vote other (vote valuesredun level~result~obne,fault)
Byte vote values[Max-redun-level];
mnt redun_ level;
Byte *result;
Boolean *fault;

Bit unan,maj;

*result - vote (vote-valuesredur,-levelsunan);

if (!unan 46 obne) *fault - True;

1* end vote-other

/ write-result writes the overall, voted SERP entry for *
/* each VID into the voted serp table.

void write-result (vid,to_valuetimer_valuecinit -ti'mer-value,obne,ibnf,
ex class,dest-vid,obne_syndrome,ibnf syndrome)

Byte vid,to -vajlue,timer_value,init -timer value,obne,ibnf;
Byte exclass,dest-vid,obne syndrome, ibnf syndrome;

gvoted_serptvid * VS + VS-to-loc] - to-value;
if (obne)

qvoted_serplvid * VS + VS_obne loc] I- VS-obne-mask;
if (ibnf)

gvotedaserplvid * VS + VS ibnf loc] I- VS ibnf mask;
gvoted_serpfvid * VS + VS -class Iic] I- ax-class;
qvoted-serpfvid * VS + VS dvid boc) - dest-vid;
qvoted_serp~vid * VS + VS -obne-synloc) I- obne_syndrome;
gvoted_serpivid * VS + VSibnfsynloc] I- ibnf_syndrome;
qvoted_serp~vid * VS + VS timer boc] - timer value;
qvotedserplvid * VS + VS-ini ttimerjloc] - mnit-timer-value;

/ vote -serp
" vote - erp receives the serp entries from foed voter and votes *
" them when told to. It writes the overall result for each V1D *
" into the voted serp array.



void vote_serp (vid.serpvalues,redun_level,to-value,fault)
Byte vid,serpvalues[Max-redun_level *Bytes per_SERP_entry];
mnt redun level;
Byte to -value;
Boolean *fault;

Byte i~vote_values(Max -redun -level].obnesyndrome~ib-if_syndrome;
Byte timer_value,init -timer-value,obne,ibnf;
Byte ex-class,dest-vid;

/*.********..*****get and vote OBNE bits *

for Ui - 0; i <- (Max -redun-level -1); 1++)
vote_valuesli] - serpvaluesti *Byte a:e rSERP ent ry + Obne_loc]
& obne-mask;

/* NOTE! ! timer value will take on the timer value at the time *
/* the ibnf is voted, NOT the obne */
fc-vote (vid,vote_values,redun -level,to_value,6obne,fault,

gobne -syndrome,&timer-value.&init_timer_value);
if ((fault) L& debug level >- 3)

printf("FA3LT in OBNE vote~n");
*fault =False;

/******************get and vote IBNF bits/
for (i =0; 1 <- (Max_redun -level -1); 1++)

vote -valuesli] - serpvalues[i *Byte s pe rSER P ent ry + Ibnf_boc]
& ibif-mask;

fc-vote (vi.d,vote-values,redun-level,to-value,£ibnf, fault,
&ibnf _ syr'drome,&tirner -value, £init timer-value);

if ((*fault) && debug_-level >= 3)
printf("FAULT in IBNF vote\n");

*fault - False;

....... ********* get and vote exctr>"i- cla-s *

for Ci = 0; 1 <- (Max_redun -level -1); 1++)
vote -values~i] - serpvaluesli *Bytes perSERP entry + Class-loc]
& class mask;

vote -other (vote -values,redun -level,&ex-class,obne,fault);
if ( (*fault) 44 debug_level >- 3)

printf("FAULT in exchange class vote~n");
*fault =False;

~~ get and vote destination VID *
for (i1 0; 1 <- (Max_redun _ level -1); 1++)

vote-values[i] - serp_values(i *Bytes perSERP entry + Dvid-lbc];
vote_other (vote valuesredun_level, &dest_vid,obne,fault);
if ((fault) As debug level >- 3)

printf("FAJLT in dest VID vote - %i\n",dest-vid);
*fault - False;

write-result (vid,to_valuetimer value,init -timer -value, obne, ibnf,
ex-class, dest vid, obne_syndrome, ibnf syndrome);

/ ~ ~ ~ ~~ ~feed voter ********t**W****

" feeds the serp voting function one serp value at a time using
" a vid-order trans-ation table

2N4



void feed-voter()

Boolean tault;
int i, j,num -entries,serp place,vid place,current vid,fault-mask;
Byte redun-level,3erp values (Max-redun-level * Bytes9_per_SERP-ent ry]I;
Byte to-value;

/* feed the voter one vid at a time ~

num -entries - gnum_vids + (Pe per_ne Num-ne);
serp_ place - 0;
vid place - 0;
fault - False;
while (serp place <- num-entries)

current vid - gvidsused(vidjplace],
redun-level - ptovtable[serp-place];
vid place +-1;

serp place +=1;

/* iterate over the redundancy level *
for (i - 0; i <- (redun-level - 1); i++)

/* accumumulate each PE's entry ~
for(j = 0; j <- (Bytes_per_SERP entry -1); J++)

serp values[Bytes per_SERP_entry 'i + J) -
serp[ptov_table(serp placel Bytes_per_SERP-entry + )

/* move to next pe *
serp place +-I

to-value - ct~current-vid * Bytes_per_CT entry + To_loc];
vote serp (cur rent_vid, serp_values, redun-level1,to-value, &fault)



10.8.7. File undxc

This file contains functions to cycle through the voted SERP memory and "send" all

messages contained therein.

#include "sbdefs.h"

/ *a***taaaaaaaafile send.c
*this file cycles through the voted serp, sending all valid
messages

*.... *..* create_message aaaaaaaaaaaaaaa

*this function creates the message packet when called by send

void creat e mes sage (source_vid, dest-vid, ex-class, mes sage numbe r,
obnesyndrome,ibnfsyndrome,timer-value,
mnit-timer-value)

Byte source-vid~dest_vid,ex_class;
mnt message_number;
Byte obne_syndrome,ibnf syndrome,timer-value,init timer value;

struct message-struct *s;
Byte redun_level;
mnt i~j;

s = figmessage(message number];

s->source-vid - source-vid;
redun_level - ct~source-vid * Bytes perCT entry + Redun-lbc]

& redun-level-mask;
for (i - 0; i -c- (redun_level - 1); 1++)

s->sourcesi - ct~source-vid * Byte s perCT ent ry + Basepeloc+i];

s->dest vid - dest vid;
redun-level - ct[dest-vid * Byte s pe rCT ent ry + Redun-lbc]

& redun-level-mask;
for (i - 0; i -c- (redun_level -1); J++)

s->dests(i] - ct[dest-vid aByte s_pe rCT ent ry + Basepe_boc + 1];

s->ex class -ex class;
s->obne_to -obne_syndrome;

s-)ibnf -to -ibnf syndrome;
s->timer-value - timer_value;
s->itv - init timer-value;

/ aaaaaaaaaaaaaaaaaaaaasend a~aaaaaaaaaaaaaa
asend cycles through the vote serp array, sending all valid
messages.a

void send(num messages)
mnt *num-messages;

Boolean all -valid-sent - False;
Byte source_vid,dest_vid,ex_class;
Bit obne, ibnf~processed;
Byte obne syndrome, ibnf syndrome, timer value,imit-timer-value;
int processed vids - 0;



int current vid place - 0;

*num messages - 0;

/* this is the vid where send begins to look for messages *
source vid - gvidsused~current-vidlace];

vhile( all validSent))

processed - gvotedserp[source-vid * VS + VSJproceased-bit_ic]
& VSyrocessed -bit-mask;

if ( processed))

processed vids +- 1;
gvoted_serp~source-vid * VS + VSJprocessed-bit_loc]
I- VS processed-bit-mask;
obne - gvotedserp[source-vid * VS + VS_obne-loc] & VS-obne-mask;
if (obne)

dest_vid - gvotedserp (source -vid * VS + VS_dvid_boc];
ibnf - gvotedserp~dest_vid * VS + VS-ibn-_1c] & VS-ibnf mask;
if (ibnf)

if (debug level >- 3)

printf ("Sending message %a\n",*num messages);
printf(" Source vid - ti\n",source-vid);
printf(" Dest vid - %i\n\n",dest_vid);

ex_class - gvotedserpsource vid * VS + VS_class boc]
& VS-class-mask;

obne_syndrome - gvotedserplsource_vid *VS + VS_obne_synlocl
& VS_obne_syn_mask;

/* ibnf syndrome comes from dest vjd *
ibnf_syndrome - gvotedserp (des tvL. VS,' + VSiJbnfsyn-loc]

& VSibnfsyn_mask;
timer_value - gvotedse rpIsour ce_vid *VS + VS_timer_1c];
init-timer-value - gvotedserp (source vid * VS +

VS init Itimer -bc];
create messageisource-vid,dest _ vid,ex_class,*num -messages,

obne syndrome, ibnf syndrome,timer-value,
mnit -timer-value);

*num. messages4-1

if (processed_vids -- gnum_vids)
all-valid-sent - True;

if (current vid place > (gnumvids - 1))
current_vid place - 0;

else current -vid_place +- 1;
source-vid - gvidsused[current-vidylace];



10.8.8. File cdeck.c

This file contains fimctions to check the messages found by send.c against those

written by nf.serp.c or serp.c.

#include "sbdefs.h"

#define MAX(a,b) ((a >- b) ? (a) : (b))

**/***************** ** getvidyposition **********************

* this function returns the index in the vids used array for the *

* vid passed to it.

int get_vidposition(vid)
Byte vid;

int i - 0;

while (i < gnum-vids)

if (gvidsused[i] -- vid)
return(i);

else ++i;

/ ******************* check others ****************************
* this function checks for correctness all the messages not found *
* in the cmessage array *

void checkothers(num_messages,marked messages)
int nummessages,markedmessages[50];

struct message_struct *m;
struct serp source_struct *ss,*sd; /* ss = source pointer */
int i; /* sv = dest pointer
Boolean error;

for (i - 0; i <= (num_messages - 1); i++)

gfree_sources[gmessage[i).source vid] - True;
gfreedests[gmessage[i].destrvid] - True;
if (!(markedmessages[i]))

error - False;

m - &gmessage(i];
as - &gserpsource[getvidposition(m->source_vid)];
ad - &gserpsource[getvid-position(m->destvid)];

/* the first IF statement decides which tovalue to use */
,'* in checking for premature messages. */

if (m->obneto !- ss->obne to)
/* use source to value */
if ((m->timervalue - m->itv) < ss->tovalue)

printf("ERROR! message %i sent prematurely\n",i);
error - True;

else if (m->ibnfto !-s s->ibnfto)
/* use dest to-value /



if ( (m->timer-value - m->itv) < sd->to_value)

printf("ERROR! message ti sent prematurely\n",i);
error - True;

if (m->obne_to !- ss->obne to)

printf ("ERROR! message ti has an incorrect OBNE syndrome\n",i);
error - True;

if (m->ibnf-to !- ss->ibnf-to)

printf ("ERROR' message tsi has an incorrect IBNF syndrome\n",i);
error - True;

if (error)

printf(" sv - %i\n",m->source vid);
printf(" dv - Pi\n",m->dest vid);

* this function compares the unanimous message list with the one
* generated by the scoreboard. It reports all inconsistencies. *

* It then calls check-others to check any remaining messages for*
correctness.*

check messages (cnum_mes sages, num me ssages)
mnt cnum-mes sages, num_mes sages;

struct message struct *s,*cs;
int i,diff,place;
Bit marked_messageslSO);
Boolean found,message not found;
Byte sour ce vid, cs our ce_vid, cde st-vid;

for (i - 0; i -:- 50; i++)

marked_messages(i] - 0;

if (cnum messages !- num messages)

if (cnum_messages > num_messages)
printf("ERROR! Not enough messages found!\n\n");

else
printf("ERROR! Too many messages found!\n\n");

if (debug-level >- 2)

printf ("Simulation found tsi messages \n", num me ssages);
printf("There are tsi necessary messages \n \n", cnum-mes sages);

/* check that all unanimous messages have been sent/
for (1 0; i <- (cnum messages - 1) ; i++)

found -False;
message_not_found - False;
place - 0;



cs - figcmessageli];
csource -vid - cs->source vid;
cdest -vid - cs->dest-vid;
while ('(found))

s - &gmessage[place);
if ((s->source-vid -- csource-vid) &L (s->dest-vid -- ccest vid))

found - True;
marked -messages[place) - 1;
if ( (s->obne -to) !- (cs->obne-to))

printf("ERROR! obne syndrome incorrect for message ti\zn",i);
if ( (s->ibnf -to) !- (cs->ibnf to))

printf("ERROR! ibnf syndrome incorrect for message ti\n",i);

else place+-1

/* check to see that array bounds haven't been reached *
if (place > num_messages)

found - True; /* exit from loop/
message_not_found - True; /* signal an error/

if (message not-found)

printf ("WARNING! Message number %i not found\n",i);
printf(" source vid - %i\n",csource vid);
printf(" dest vid - %i\n\n",cs->dest-vid);

checx-othersinummessages~marked_messages);



10.8.9. Mie io"

This file contains input-ouput functions to write SERPs and CTs to an external file

for reading into the VHDL model.

#include "sbdefs.h"
#include <stdio.h>

/ t*tattat.ttttttttt.*t~t tt*t*tttt**ttttt.tttettt.t/

/* write status

/* This function writes the status line to the output file. */
/* It is called after each serp-message cycle. */
/* * tat** tt a t...***ttt. at*.tttttt tttttt. *at.t*t/

void write status(outputfile,regenerate ctnumvids,num_serp entries,
num messages)

FILE t output-file;
Boolean regenerate_ct;
int num vids, num serpentries, num messages;

fprintf(output file,"%i %i %i %i",regeneratect,numvidsnum serp entries,
nummessages);

fprintf(output_file," Status line\n");

/* write_serp a/

/* This function simply writes the SERP to a file.

void writeserp(outputfile,num_serp entries)
FILE *output _file;
int num-serp_entries;

int place,i;
int obne,ibnf,dvid,broadcast,packettype,ex_class;

for (i - 0; i < numserp_entries; i++)

/* write out the complete SERP entry for each PE t/

place - i * Bytes_per_SERP_entry; /- a place holder t/

obne = (serp[place + Obne loc] & obne mask) ? True False;
ibnf - (serp[place + Ibnfloc] A ibnfmask) ? True False;
dvid - serp[place + Dvid_loc];
broadcast - False; /* no broadcasts for now (30 Jan 91) t/

packet type - 0;
ox class - 0;

/* write the values to the file t/

fprintf(output file,"%i ti %i %i %i %i\n",obne,ibnf,dvid,broadcast,
packettype,exclass);

/* write ct
/* This function writes the ct to the output file in the */
ft pro-determined format. (see documentation)
/ ttt.ttttt.etatatetttttttttttttttettatttett.t.ttt./



void write ct(output_file)
FILE *output_file;

imt i,j,loc;
int vid-number, redun~presence~timeout;

for (i - 0; 1 < Mum vids; i++)

/* calculate all the entries for a file line *
vid -number - ct[i * Bytes perCT entry];
redun - ct[i * Bytes perCT entry + Redun -lc] redun-level-mask;
timeout - ct~i * Bytes per CT entry + To_boc];

/* only print a VID's entry if the redun is non-zero
if (redun)

fprintf (Output_file,"ti ",vid -number);
fprintf(output_file,"ti ",redun);

presence - ct [i - Bytes perCT entry + Presence_boc]
>> presence -shift;
for (j - 0; j' < Max_ redun_level; j++)
if (presence&~ gpmasksj])

fprintf(outputfile,"l )

else
fprintf(output _file,"0 11);

for (j - 0; j < redun; j++)

loc - unpack(ct~i * Byte s pe rCT ent ry Basepebloc + 4 )
fprintf (output _file,"ti ",loc);

fprintfioutput_file,"%i ",timeout);

/* writemessages *

void wr ite me ssages (out putf file, enum-me ssages)
FILE *output _file;
mnt cnum_messages;



10.8.10. File main.c

This file contains the main() function which takes care of the command line

switches.

#include "sbdefs.h"
#include <sys/time.h>
#include <stdio.h>

void incrementtimer()

to-clock +- random() & Ox07;

/.**************** ***. parsecommands *** *****t******

* This function parses the command line for default overrides of
n num rounds, generate_faults, and debuglevel. *

ttttttttttttttt *t*t*t*****t .*t******t*ttttt***** t* /

void parsecommands (argc,argv, seed,operation, file-name)
Int arqc;
char *argv[];
int *seed;
char *operation,filename[lO];

char *str;

while (--argc > 0)

str - argv[argcJ;
if ( (str(0 . .

else

switch(str[l])

case 'd':
if (sscanf(str,"% tc%*cd",&debuglevel) !- 1)

printf("Bad debug level argument\n");
exit (l);

break;
case In':

if (sscanf(str,"%*c%*cd",&num rounds) ' 1)

printf("Bad number of rounds argument\n");
exit l};

break;
case If':
generatefaults - True;
break;
case Is':
if (sscanf(str,"%1c%*c%d",seed) !- 1)

printf("Bad seed argument\n");
exit (1);

break;
case '':



/* tell the program to send the ct and serp to a file/
"operation -= l
/*if (sscanf(argv[--argc],'Its", file-name) 1)

printf ("Bad output file name\n");
exit (1);

break;

#define default-_file "test.ill
#define seed-file_name "seed.last"

main (argc,argv)
mnt argc;
char *argv[H;

mnt iseed - 0;
mnt nummessages,cnum_messages;
mnt numserpentries,serpround,numbers;
char operation,*file -name,*ptimestring,timestring[26);
struct timeval time;
struct timezone tzp;
FILE *out _file,*seed_ file;

/* get the default seed frc he random number generator *

numbers -qettimeofda,,, -t.e,&tzp);
/*ptimne string - time _string;
ptime_ string - asc'ime (time);*/
seed - time.tv-a & Oxtt;

/* set defau!Ls and interpret the command line arguments/
debug level = 1;
num_ rounds =50;

generatf faults = False;

operation - Is.;

file-name - default-file;

parse commands(argc,argv,&seed,&operation,file-name);

/* seed the random number generator1
for (i - 0; i <- seed; i++)

numbers - random() & Oxff;

/* write the seed to a file "
if ((seed-file - f open (seed_f ile_name, "a")) -- NULL)

printf ("Error opening seed file -- continuing\n\n");
else

fprintf (seed_file, "seed - ti\n",seed);
fclose (seed-file);

s witch (operation)

case 1o1:
/* Io' for output to a file/
printf("%s\n",file -name);
if ((out-file - fopen(filename,"w-)) -- NULL)

printf ("Error in opening file -%s-\n",file_name);

M34



exit (1)

increment timer C;
num serp entries - Peperne * Numne;
get serp(tcnum-messages);
write -status (out file,True,gnumvids,num_serp-entries, cnum messages);
write-Ct(out-file);

write -serp(out file, num_serp_entries);
write messages (out file, cnum-messages);
for (T - 0; i < num-rounds; i++)

get serp (&cnum -messages);
write-status(out_file,False,gnum Ivids, num serp_entries,cnum messages);
write_serp~out file,num_serp entries);
write_messages (out_file,cnum messages);

fclose(out-file);
breakc;

case Is':
/ Is' for simulate *
serp round - 0;
for (i - 0;i < num-rounds; i++)

increment timer 0;
get serp ( &cnum -messages);
serp round +- 1;

if (debuglevel >- 1)

printf("Round - %i\n",serp rou;nd);

feed voterl);
send (&num messages);
check_mnessages Ccnum messages,numn_messages);
clear-voted serp()



10.8.11. makeffie
CFLAGS - -g

sb: io.o vote.o serp.o nf_serp.o ct.o send.o check.o main.o
cc S(CFLAGS) -o sb io.o vote.o serp.o nf serp.o ct.o send.o check.o main.o

io-o: io-c sbdefs.h config.h
cc -C S(CFLAGS) io.c

Vote.o: vote.c sbdefs.h config.h
Cc -C $(CFLAGS) vote.c

serp.o serp.c sbdefs.h config.h
cc -c S(CFLAGS) serp.c

nt_serp.o :nf_serp.c abdefs.h config.h
cc -c S(CFLAGS) nf-serp.c

ct.o : ct.c sbdefs.h contig.h

cc -c S(CFLAGS) ct.c

send.o : send.c sbdefs.h config.h
cc -c $(CFLAGS) send.c

check.o :check.c sbdefs.h config.h
cc -c $(CFLAGS) check.c

main.o: rnain.c sbdefs.h config.h
cc -c S(CEFLAGS) main.c

clean:
rm
rn,



11. l P wo

[Arm87] Armstrong, J. Chip-Level Modeling, with VHDL, Prentice-Hall: Englewood
Cliffs, 1989.

[Bohm9l] Bohm, M. "Top-Down Design Using VHDL.' Tutorial, VHDL User's Group
Spring 1991 Conference, Apr. 8-10, 1991.

[Butler89] Butler, B. "A Fault-Tolerant Shared Memory System Architecture for a
Byzantine Resilient Computer." Master of Science Thesis, MIT 1989.

[Dolev82] Dolev, D. "The Byzantine Generals Strike Again', Journal of Algorithms,
Vol. 3, 1982, pp. 14-30.

[Harper87] Harper, Richard. "Critical Issues in Ultra-Reliable Parallel Processing."
Doctor of Philosophy Thesis, MIT 1987.

[IEEE88] Institute of Electrical and Electronics Engineers Inc. 1988. "IEEE Standard
VHDL Language Reference Manual,* IEEE Standard 1076-1987.

[Jain9l) Jain, P. "Architectural Models are Key to System Level Design", Electronic
Design, Mar 28, 1991, pp. 57-70.

[Lamp82I Lamport, L. et. al. "The Byzantine Generals Problem", ACM Transactions
on Programming Languages and Systems, Vol. 4, No. 3, Jul 1982, pp. 383-401.

[Mor9l] Morton, D. 'Hardware Modeling and Top-Down Design Using VHDL."
Master of Science Thesis, MIT 1991.

[RL86] R. Lipsett, E. Marschner, M. Shahdad. 'VHDL - The Language,* IEEE
Design and Test of Computers, Vol 3, No. 2, April, 1986, pp. 28-41.

[RL89] R. Lipsett, C. Schaefer, C. Ussery. VHDL * Hardware Descrintion and
Drji KGuwer : Boston, 1989.

(Sak9l] Sakamaki, C. 'The Design and Construction of a Data Path Chip Set for a
Fault Tolerant Parallel Processor." Master of Science Thesis, MIT 1991.

[Syn90] Synopsys, Inc. 'VHDL Compilerm Reference,' July, 1990.

[VHDL90] The VHDL Consulting Group. 'VHDL System Design I," Seminar, Jul 8-9,
1990.

[Wax89] R. Wazman, L. Saunders. "The Evolution of VHDL," Information
Processing, 1989, pp 735-742.

237


